A New Multi-Criteria Decision Analysis Methodology for the Selection of New Water Supply Infrastructure.

Providing access to drinking water is a global challenge; it guarantees the quality of life and economic development [1]. The United Nations [2] stated that “the right to safe drinking water

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

water

Article

A New Multi-Criteria Decision Analysis Methodology

for the Selection of New Water Supply Infrastructure

Henry Amorocho-Daza

1

, Sergio Cabrales

2

Raquel Santos

3

and Juan Saldarriaga

4,

*

1

Water Distribution and Sewerage Systems Research Center (CIACUA), Universidad de los Andes,
Carrera 1 Este No. 19A-40, Bogotá 111711018, Colombia; hd.amorocho1052@uniandes.edu.co

2

Department of Industrial Engineering, Universidad de los Andes, Carrera 1 Este No. 19A-40,
Bogotá 111711018, Colombia; s-cabral@uniandes.edu.co

3

Centre for Energy, Petroleum and Mineral Law and Policy CEPMLP, University of Dundee, Ninewells Drive,
Dundee DD1 9SY, UK; r.santosramos@dundee.ac.uk

4

Department of Civil and Environmental Engineering, Water Distribution and Sewerage Systems Research
Center (CIACUA), Universidad de los Andes, Carrera 1 Este No. 19A-40, Bogotá 111711018, Colombia

*

Correspondence: jsaldarr@uniandes.edu.co

Received: 7 March 2019; Accepted: 30 March 2019; Published: 18 April 2019

Abstract:

Reliable and safe access to drinking water is necessary to ensure the economic and

social sustainable development of human communities. This task requires a multi-criteria decision
analysis (MCDA) methodology to select alternatives for new water supply infrastructure. These
alternatives represent significant financial resources and are established for a long lifespan. To support
decision-making in the context of building new water supply infrastructure, this study developed an
MCDA methodology that integrates a hierarchy of non-economic benefits and the expected costs into
a global index. Our methodology was implemented in the city of Santa Marta, Colombia. This city
currently has a 60% drinking water shortage, and urgently needs to expand its capacity to satisfy the
increasing water demand. The results of this study support the implementation of the best alternative
for addressing Santa Marta’s water supply problem by considering the preferences of stakeholders.

Keywords:

multi-criteria decision analysis; analytical hierarchy process; water supply infrastructure

1. Introduction

Providing access to drinking water is a global challenge; it guarantees the quality of life and

economic development [

1

]. The United Nations [

2

] stated that “the right to safe drinking water and

sanitation is a human right essential to the full enjoyment of life and all human rights,” and, therefore,
states and international organizations must provide the necessary financial resources to guarantee
them. Conversely, UNICEF and the World Health Organization (WHO) [

3

] estimate that 1.8 billion

people have access to water that is unfit for human consumption, 663 million people do not have access

to safe drinking water sources, and 2.4 billion people lack access to basic sanitation. As a result, major
challenges exist to guaranteeing this right to a significant portion of the global population, particularly
in developing nations [

4

].

Currently, more than 2 billion people in the world have significant restrictions on the access to

potable water supply [

5

]. First, the availability of water over time is derived from the relationship

between supply and demand; increases in demand relative to supply put pressure on the resource
availability. Therefore, a relevant approach to quantifying the pressure on water sources is the
ratio between the water withdrawn for di

fferent purposes (agriculture, industry, and domestic) and

the total renewable water resources. A higher proportion of use indicates that the pressure on the
resource increases, and it is substantially more di

fficult to satisfy an increasing demand for water [

6

].

Water 2019, 11, 805; doi:10.3390

/w11040805

www.mdpi.com

/journal/water

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

2 of 23

According to the United Nations World Water Assessment Program (WWAP) [

7

], major pressure is

exerted on water sources in the United States, North Africa, Middle East, Australia, India, and China.

This pressure causes a condition in which approximately two thirds of the world’s population will live

in water-stressed countries by 2025 [

8

].

In addition to problems of availability, water supply also depends on the economic, institutional,

and quality of resource factors [

7

]. Economic factors relate to water scarcity due to a lack of

infrastructure—due to technical or financial constraints—independent of the availability of water.

According to the Food and Agriculture Organization of the United Nations (FAO) [

9

], institutional

factors arise when institutions are unable to ensure a safe, equitable, and reliable drinking water
supply to users. Similarly, water quality is a restriction caused by the elevated costs of treating water
from highly contaminated sources [

10

,

11

]. Note that the problems associated with the availability of

drinking water in Latin America, Sub-Saharan Africa, and South Asia are primarily economic, whereas

Africa, India, and China have an increased risk in relation to the water quality in watersheds. This

finding implies an increase in the risks to human health, economic development, and ecosystems [

12

].

The demand for drinking water will proportionally increase as the world population increases.

According to projections by the United Nations Department of Economic and Social Affairs (UNDESA) [

13

],

the global population is expected to increase by approximately 32% between 2014 and 2050—from 7.24
billion people to 9.55 billion people. The population living in urban areas is estimated to increase by 64%
between 2014 and 2050—from 3.88 billion people to 6.34 billion people. According to the Organization
for Economic Co-operation and Development (OECD) [

14

], these population dynamics will cause an

escalation in the global drinking water demand of approximately 55%, and an increase of more than

130% and 400% for the domestic demand and industrial demand, respectively, by 2050.

Additionally, in a scenario of increasing water scarcity, proper management of the water supply

network becomes fundamental. According to Pietrucha-Urbanik and ˙Zelazko [

15

] failures on water

networks are the principal operating problems of potable water supply systems. In this line, the WHO
has proposed the implementation of water security plans (WSP) in order to systematically assess and
manage the risks of water supply from source to consumer [

16

,

17

]. Consequently, is necessary to

identify, analyze, and make operative and strategic decisions to reduce the water supply network’s
failure frequency in order to minimize service interruptions and meet water quality standards to

protect the final user [

15

,

16

,

18

].

Consequently, water resources management is a complex task that is aimed at ensuring economic

development and improving the quality of life of people in subsequent decades [

19

]. The proposed

solutions to ensure water supply must be linked to adequate infrastructure and strong institutional
management that is focused on guaranteeing the sustainability of this resource. Several criteria must be
considered to represent the non-economic benefits of new water supply infrastructure (e.g., operational
time, infrastructure setup, operational risk, social and environmental factors). The complexity of
the decision-making problems in water supply systems requires the integration of multiple criteria,
models, and data sources [

20

], which confirms that the use of multi-criteria decision analysis (MCDA)

is a suitable approach for addressing water resources planning and management problems, including
the identification and selection of new water supply infrastructure [

21

]. MCDA methodologies have

been employed in water sustainable management applications, such as water resources sustainability
in the context of watershed management [

22

24

], urban drainage planning and management [

25

28

],

and wastewater infrastructure planning and usage [

29

,

30

].

This paper is aimed at developing a methodology based on MCDA to improve the decision-making

process for the selection of new water supply infrastructure that separately considers economic and

non-economic criteria. This approach simplifies the global evaluation of alternatives and enables
stakeholders to select an option given their economic restrictions or preferences. During the research
for this paper, we discovered that many of the applications of MCDA for water supply infrastructure
decisions have included economic criteria as part of the problem’s main hierarchy. However, none of the
investigated applications treated the economic criteria separately from the non-economic criteria. The use

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

3 of 23

of four main non-economic criteria is proposed; the criteria are adaptable to other possible applications:
operational time, infrastructure setup, operational risk and socio-environmental considerations. These
additional criteria cover the global objective of providing a feasible and sustainable new water supply to
a municipality, which is an assumption in this research. This structured methodology represents a new
approach to address this type of decision-making problem. The proposed methodology is illustrated

with a case study in the city of Santa Marta, Colombia, which has a water shortage and urgently needs

to build new water supply infrastructure. The proposed methodology supported the decision-making

process that facilitated the selection and future implementation of the alternative that will address Santa

Marta’s water supply problem.

2. Literature Review

MCDA is a structured approach for measuring the performance of alternatives that are based

on multiple attributes [

31

]. The di

fferent methods that fall within this category can support the

decision analysis process for issues in which more than one criterion—also known as attribute—is
simultaneously evaluated [

32

]. These decision analysis tools enable the inclusion of relative importance,

or weight, for each criterion. The weight is used to rank the performance of the alternatives to be
implemented against the selected criteria [

33

]. These methods have the potential impact of improving

transparency, auditability, and analytical rigor of decision-making processes in complex contexts [

34

].

Several MCDA techniques are discussed in the literature. Figueira et al. [

35

] developed an

exhaustive state of the art of this field, as presented in Figure

1

. MCDA techniques can be classified in

categories such as outranking methods, multi-attribute utility and value theories (MAUT and MAVT),

pairwise comparison methods, distance based methods, and fuzzy set theory. MCDA methodologies

and their implementation is a relevant research field, given its impact on improving the decision-making

process in complex environments and problems. Numerous MCDA techniques provide decision

makers and analysts the opportunity to properly and e

ffectively address decision problems.

MCDA has been extensively applied to support decision-making processes for issues related to the

management and planning of water resources [

31

,

32

,

36

], for example, in several urban water supply

case studies. Kabir et al. [

37

] reviewed more than 300 published MCDA methods for infrastructure

management from 1980–2012, including 68 water resources systems applications. These publications
included an extensive distribution of methods, including ELECTRE, PROMETHEE, MAUT, analytic
hierarchy process (AHP), technique for order of preference by similarity to ideal solution (TOPSIS),
compromise programming (CP) and combined methods.

MAUT and MAVT are well-known MCDA methods that have been implemented in various urban

water planning infrastructure cases. Lienert et al. [

21

] developed a structured decision-making (SDM)

procedure to guarantee the sustainability of water infrastructure planning, which is critically based on

the stakeholder feedback and four scenarios, using a MAUT approach in a Swiss case study. Similarly,
Scholten et al. [

38

] employed a MAUT model to consider the preference of ten diverse stakeholders to

rank and evaluate the uncertainty of eleven water supply infrastructure alternatives for the region of
Mönchaltorfer Aà, Switzerland.

One of the most extensively used pairwise comparison methods is the AHP. Okeola and Sule [

39

]

used an AHP approach to select the best of three management operation alternatives for a new urban

water supply scheme in the city of Offa, Nigeria. The conclusion was that the best management option

for the system was public ownership and operation. Likewise, Jaber and Mohsen [

40

] implemented

an AHP approach to evaluate non-conventional water resources supply alternatives to ensure water
availability and sustainability in Jordan. They also concluded that desalination and water harvesting

were superior to treated wastewater and water importation as potential solutions for water scarcity in

the country.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

4 of 23

Water 201911, x FOR PEER REVIEW 

4  of  23 

 

 

Figure  1.  General  multi-criteria  decision  analysis  (MCDA)  technique  classification,  adapted  from 
Figueira et al. [35]. 

Other  methodologies,  such  as  CP  and  PROMETHEE,  have  also  been  implemented  in  urban 

water  infrastructure  decision-making  and  other  water  resources  management  applications. 
Abrishamchi et al. [41] proposed the CP approach to guide decision makers in the selection of the 
best  alternative  of  water  infrastructure  intervention  in  the  city  of  Zahidan,  Iran.  Additionally, 
Kodikara et al. [42] developed a PROMETHEE outranking method to evaluate alternative operating 
rules for urban water supply reservoir systems in Melbourne, Australia.   

3. Methodology Based on MCDA to Improve the Decision-Making Process for the Selection of 
New Water Supply Infrastructure 

The methodology proposed is summarized in Figure 2. 

 

 

Figure 2. Methodology summary. 

Figure 1.

General multi-criteria decision analysis (MCDA) technique classification, adapted from

Figueira et al. [

35

].

Other methodologies, such as CP and PROMETHEE, have also been implemented in

urban water infrastructure decision-making and other water resources management applications.

Abrishamchi et al. [

41

] proposed the CP approach to guide decision makers in the selection of the

best alternative of water infrastructure intervention in the city of Zahidan, Iran. Additionally,
Kodikara et al. [

42

] developed a PROMETHEE outranking method to evaluate alternative operating

rules for urban water supply reservoir systems in Melbourne, Australia.

3. Methodology Based on MCDA to Improve the Decision-Making Process for the Selection of
New Water Supply Infrastructure

The methodology proposed is summarized in Figure

2

.

Water 201911, x FOR PEER REVIEW 

4  of  23 

 

 

Figure  1.  General  multi-criteria  decision  analysis  (MCDA)  technique  classification,  adapted  from 
Figueira et al. [35]. 

Other  methodologies,  such  as  CP  and  PROMETHEE,  have  also  been  implemented  in  urban 

water  infrastructure  decision-making  and  other  water  resources  management  applications. 
Abrishamchi et al. [41] proposed the CP approach to guide decision makers in the selection of the 
best  alternative  of  water  infrastructure  intervention  in  the  city  of  Zahidan,  Iran.  Additionally, 
Kodikara et al. [42] developed a PROMETHEE outranking method to evaluate alternative operating 
rules for urban water supply reservoir systems in Melbourne, Australia.   

3. Methodology Based on MCDA to Improve the Decision-Making Process for the Selection of 
New Water Supply Infrastructure 

The methodology proposed is summarized in Figure 2. 

 

 

Figure 2. Methodology summary. 

Figure 2.

Methodology summary.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

5 of 23

3.1. Definition of the Problematic Situation and a Global Goal for New Water Supply Infrastructure

The first step in the methodology is to describe the context, scope, and boundaries of the drinking

water problem [

21

]. As suggested by Clemen and Riley [

43

], three principles must be fulfilled to obtain

the correct decision-making context: (1) the decision context must capture the current situation (“Are

you addressing the right problem?”); (2) the decision ownership must match the decision context (“Do
you have the authority to make the decision within the specified context?”); and (3) the feasibility of

the study (“Will you be able to perform the necessary study and analysis in the time allotted with
the available resources?”). In addition to fulfilling these principles, our methodology suggests that
a group of experts and stakeholders evaluate the current status of the water supply infrastructure
system. This evaluation should present descriptive statistics that consider current and future demand
and the expected drinking water shortage for the municipality. After the supply and demand trends
are determined, the failures, weaknesses, opportunities, and population needs must be assessed. Once
these items have been evaluated, the experts must envision a global goal for the new water supply
infrastructure that satisfies the ongoing and future drinking water requirements for the city.

3.2. Definition of Criteria

As the water supply infrastructure serves to satisfy several purposes and has di

fferent benefits

and costs, the criteria against which the performance of the system is going to be assessed must be
defined [

44

]. These criteria depend on the context of every particular situation. However, a common

approach has been to consider social, technical, environmental, and economic aspects, such as the
main criteria [

39

,

41

,

45

]. As suggested by Saaty [

46

], the analysis of the problems in this research will

be separated into two main groups: non-economic criteria and economic criteria.

Non-economic Criteria

The non-economic criteria to be used in this methodology are defined as operational time,

infrastructure setup, operational risk, and socio-environmental criteria. These criteria attempt to
represent the complexity of constructing these systems and the tradeo

ffs when several alternatives

are considered. The characterization of these criteria is flexible for each problem of building new

water supply infrastructure; thus, the stakeholders should define sub-criteria that further describe the

non-economic criteria proposed in this paper.

The operational time criterion captures the importance of providing water as soon as possible to

satisfy the demand or avoid shortages. This criterion has special importance in developing countries,

where the current infrastructure is often either unable to provide a sufficient amount of drinking water

to the inhabitants, or does not even exist. The duration of the construction phase of each potential
alternative differs depending on the water treatment facilities and geographic conditions. If the duration
of a civil project is excessive, the population will not be able to obtain a sufficient amount of safe water
over a longer period. If the water supply is adequate but is forecast to be insufficient within a certain

period, the durations of the new projects or expansions should be appropriate to avoid water scarcity in

the municipality.

Infrastructure setup is a fundamental criterion for water supply that refers to the operational

characteristics of different alternatives.

To provide water in municipalities and communities,

the construction of infrastructure is necessary; however, many approximations depend on the purpose
of the system. For example, if you want to build a centralized water supply system for a big city,
the technology for treatment and distribution would radically differ when compared with decentralized
facilities in a smaller town. For the case of centralized systems, the operational ease should be considered.
If the system has fewer treatment plants and pumping stations, it is easier to manage. Evaluating the

possibility of future expansions is also important to satisfy future water demand and adapt the treatment

facilities over time.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

6 of 23

Risk is commonly defined as the frequency and severity of losses arising from each alternative

of the system in its uncertain environment [

47

]. Operational risk has been defined by the Basel

Committee as the risk of losses arising from problems from internal controls, systems, people, and
external events [

48

]. For the selection of new water supply infrastructure, the operational risk criterion is

concerned with ensuring a system’s reliability to obtain sufficient water from surface and groundwater
sources. In addition, vulnerability is defined as the characteristics of the severity of water deficits if a
failure occurs [

49

]. This criterion is relevant for reducing the water distribution system’s vulnerability by

decreasing the network’s maximum pressure and increasing redundancy, that is, the number of water
conduction lines. Another common operational risk, especially in developing countries, is sabotage to the

water infrastructure. For example, the risk of water adduction losses is proportional to the accessibility

of the adduction pipelines to the population. Water resources planners must identify and describe the
operational risk depending on the context and the characteristics of the water supply system.

The social and environmental impacts of water supply infrastructure should be considered. These

impacts should be revised in each context, but a common concern is to minimize the area of influence
of the project in social and environmentally protected areas, such as national parks or cultural reserves

(e.g., indigenous reserves). Reducing the environmental impact of the construction process is desirable.
A suggested method for measuring these impacts is to reduce the conduction line length; this method
will decrease the impact on the vegetation coverage. Another method is to reduce the percentage of
water withdrawn from rivers, to guarantee its ecological flows. As a special case, if the water supply

infrastructure is going to satisfy the demand of a large city, the possibility of supplying water to small
surrounding municipalities should be considered to maximize the local economic development [

50

].

3.3. Economic Evaluation

In addition to assessing the water supply alternatives against the previously discussed criteria,

their respective costs should be evaluated. An appropriate estimation of these costs must include the
construction and operation of the system. Numerous calculation methods are available to estimate
the economic performance of the alternatives [

45

,

51

]. For this decision problem, however, we suggest

evaluating the present value of the costs (PVC) instead of the net present value (NPV), because
the estimated earnings of the project during its lifecycle should represent a cost recovery for water
suppliers using a typically regulated water distribution tari

ff [

52

]. The PVC includes construction and

operation costs. The main operative costs for drinking water systems are pumping and treatment
equipment. Given the variety of water sources, treatment requirements, topographical conditions, and
general planning, a relevant and dynamic di

fference exists in the variable costs among the alternatives.

This di

fference represents an effort to estimate the financial performance for every alternative during

the project lifecycle.

3.4. Definition of Alternatives

The next step is to determine the alternatives that can potentially satisfy the problem. Each alternative,

or option, must represent a feasible and suitable resolution to the problem of the water supply, considering
the financial, social, and environmental restrictions [

53

]. To maximize the diversity and relevance of

the alternatives to consider, they should be proposed by the dialogue and discussion of different
stakeholders [

21

]. Once the water supply alternatives are selected, they will be evaluated against the

previously defined criteria.

3.5. Non Economic Evaluation

Because the evaluation of the best alternative based on non-economic criteria is complex, this

decision-making process should be supported with a MCDA model. As noted, numerous MCDA
approaches are available in the academic literature; the majority of these approaches have been
increasingly applied during the last 20 years, particularly in the context of water resources planning
and management [

54

]. The selection of the model should also be performed via agreement among

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

7 of 23

stakeholders, to ensure that they are satisfied with the manner in which the model operates (i.e.,
assumptions, scales of preference, weighting and ranking) to subsequently implement its results [

35

].

The results obtained from the MCDA technique should be presented in a ranking of the alternatives.
The alternatives must be evaluated against the previously defined criteria and subcriteria. Depending

on the selected MCDA method, this evaluation can include objective and subjective assessment and

perceptions. After the alternatives have been ranked, a sensitivity analysis should be performed.
A sensitivity analysis helps to determine the robustness of the decision model. In a sensitivity

analysis, various scenarios can be investigated; for example, how a change in the weight of the criteria,
the inclusion of new criteria or the exclusion of applied criteria can impact the results.

3.6. Global Evaluation

For every decision, positive and negative factors to contemplate are usually psychologically

interpreted in the form of benefits (gains) and costs (losses) [

55

]. The evaluation of a decision according

to these factors is not easily directly performed. Saaty [

56

] suggests creating a cost hierarchy to

paired comparisons with judgments using a scale of 1–9. However, we alternatively propose a direct

estimation of the present value of the total cost (PVC), including OPEX and CAPEX.

Based on the four control merits of the benefits (B), opportunities (O), costs (C), and risks (R)

formula proposed by Saaty [

46

], we suggest a simplification of his formula, which employs only

benefits (B) and costs (C). Formula (1), which is proposed for this decision-making problem, is an
alternative to the traditional marginal return (B

/C), and is useful when both B and C have the same

order of magnitude [

46

]. We globally evaluated each alternative by combining the normalized benefits

(B) and normalized costs (C), as shown in Equation (1):

I

i

= (

1 − w

C

)

·B

N

i

− w

C

·C

N

i

, ∀ i ∈ A

(1)

where I

i

is the value of the index for alternative i; w

C

is the weight given to the costs; B

N

i

is the

normalized benefits; C

N

i

is the normalized costs for alternative i, respectively; and A is the set of

alternatives. The range of the performance index will vary between −1 and 1.

3.7. Selection of the Best Alternative for Water Supply Infrastructure

The goal of the decision-making methodology presented in this research is to identify the best

alternative for new water supply infrastructure, given the stakeholder preferences and the structure of
the decision problem. Once the ranking of alternatives has been established, a decision maker should
have su

fficient information to determine the best alternative and proceed to its implementation to

address the water supply problem.

4. Case Study: City of Santa Marta, Colombia

4.1. Definition of the Problematic Situation and a Global Goal for New Water Supply Infrastructure

Santa Marta is located in the Magdalena region in the northern coast of Colombia; it is currently

experiencing serious problems regarding its water supply. In an average season, the inhabitants require
2.21 m

3

/s of water; however, the water supply is approximately 1.55 m

3

/s, that is, nearly 30% less

of the required water supply. During the dry season, the supply can be as low as 0.88 m

3

/s, which

represents an approximately 60% shortage [

57

]. This scarcity has prompted the local water service

provider to implement temporary solutions, including the distribution of drinking water via tanker

trucks. Problems such as watershed deterioration—and its associated river flow reduction—decreased
rainfall, illegal water collection, and rapid demographic growth contribute to this shortage.

Santa Marta has two potable water treatment plants (PWTPs), which are connected to a water

distribution network that encompasses 79% of households [

58

]. The Mamatoco PWTP is the principal

plant; it treats approximately 0.8 m

3

/s from the Manzanares and Piedras Rivers—nearly 20% of its

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

8 of 23

capacity—but associated river flow rates do not enable a full operation capacity. Similarly, the El
Roble PWTP treats approximately 0.45 m

3

/s from the Gaira River and does not operate at full capacity.

In addition to the surface water sources, the city has an aquifer from which the local water service

provider can extract 0.3 m

3

/s during dry months without risk of seawater intrusion [

58

]. However,

several non-controlled wells extract an unknown amount of water, which can compromise the water

quality of the aquifer.

Anticipated rapid population growth will exert additional pressure on the city’s water supply

capacity in subsequent years. Santa Marta is an important tourist destination, with more than
500,000 inhabitants and approximately 51,000 additional tourists during peak seasons. The permanent

population is expected to experience geometric growth at a rate of 2.82% every year for the next 50
years. The total population during peak tourism and low tourism season is expected to increase at

a rate of 2.93% and 2.86%, respectively [

58

]. By 2040, the population is expected to double to nearly

980,000 permanent inhabitants and a floating tourist population of 133,000. Similarly, by 2065 the total

population in the city will exceed 2.2 million. In less than 50 years, the city must be able to provide

drinking water to a population that is four times larger than the current population. Considering
that the demand is 0.15 m

3

per person per day, the city must provide an increasing water supply of

approximately 5.7 m

3

/s by 2065 [

57

].

For this case study, the judgments and preferences of eight experts in water management problems,

particularly drinking water and basic sanitation issues in Colombia, were collected. These eight

experts are stakeholders with academic, government, and local water service provider backgrounds.

The academic experts included the project director of the Santa Marta’s strategic water supply planning

research and a professor of the Aqueduct and Sewage Research Center (CIACUA) at the Universidad
de Los Andes. The three government experts included a project evaluator from the water and sanitation
o

ffice at Financial Entity for the Territorial Development (Findeter S.A.), a project manager, and an

o

fficial from the Vice-Ministry of Water and Sanitation of Colombia. The engineering planning chief,

the general director and the technical director of the Santa Marta’s water utility, Metroagua S.A E.S.P.,

were involved in the decision-making process.

4.2. Definition of Criteria

Table

1

defines the hierarchical structure of the non-economic criteria and sub-criteria. The goal of

the decision problem is described at the top of the hierarchy: to determine the best alternative for the
construction of a new water supply infrastructure for the city. Level 2 of the hierarchy includes the
main non-economic criteria: operational time, infrastructure setup, operational risk, and social and
environmental criteria. Level 3 of the hierarchy includes the sub-criteria within each main criterion.
Similarly, Level 4 represents the second level of the sub-criteria for the Level 3 sub-criterion.

4.3. Definition of Altermatives

Generation of the alternatives requires an understanding of the water sources to be considered.

The project’s team developed studies that consider the hydrological, meteorological, topographical,

and legal aspects related to the benefits and limitations of the possible water resources (e.g., rivers,
groundwater, and seawater). Subsequently, the group of stakeholders (e.g., government, university,
and water utility) joined in several sessions to discuss and select a reasonable combination of water
sources that compiled the group of feasible alternatives to be subsequently evaluated using the MCDA
based methodology. Strengthening the current system capacity by providing water from several
additional sources, including various rivers and even from the Caribbean Sea, has been proposed.
Seven alternatives have been proposed by the stakeholders to address the current water shortage
condition in the city and guarantee its drinking water requirements during the next 50 years. As the
criteria and alternatives have been identified, the next step is to create a matrix to be populated with
the corresponding information.

Table

2

shows the matrix populated with the information.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

9 of 23

Table 1.

Global goal, criteria, and sub-criteria description.

Goal

Criteria

First Level

Sub-Criteria

Second Level

Sub-Criteria

Description

Find

the

best

alternative

of

new

water

supply

infrastructure

for

Santa

Marta,

Colombia

Operational time

Reduce time for

operation

beginning

Time in which the first stage of
alternative will be in operation

Reduce time to

meet water

demand

Time in which the demanded water is
equal to the water supplied in the city

Infrastructure

setup

Ensure operational

ease

Reduce number of

potable water

treatment plants

(PWTP)

Number of PTWP and its required

expansions

Reduce number of

pumping stations

Number of pumping stations required

Provide the

possibility to have

future expansions

Possibility to have additional

expansions at the end of the planning

horizon

Operational risk

Ensure system

reliability

Related to the water availability and

water withdrawals from rivers, this is

the relationship between the minimal

flow rate of the rivers and the water

supply required by the end of the

planning horizon

Reduce system

vulnerability

Reduce network

maximum pressure

Estimated network pressure

Increase the

number of water

conduction lines

Conduction lines required by the

alternative

Reduce the risks of

losses during

adduction

The risk of water adduction losses is

proportional to the accessible area by

population to the adduction pipelines

Social and

environmental

Minimize influence

area at National

Parks

The intersection area between a 100 m
influence area of the alternative route

and the area of the National Parks

Minimize influence

area at indigenous

reserves and sacred

sites

The intersection area between a 100 m
influence area of the alternative route

and the area of indigenous reserves

and sacred sites

Reduce

environmental

impact

Reduce conduction

line length

The impact in the vegetation coverage

is proportional to the conduction line

length

Reduce percentage

of water

withdrawn

This impact is assessed as the ratio

between the flow withdrawals and

the ecological flows of the respective

rivers

Guarantee

possibility of

bringing water to

surrounding

municipalities

Some alternatives have the possibility
to supply water to small surrounding

municipalities, namely: Ciénaga,

Puebloviejo, Tasajera, and Nueva

Venecia

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

10 of 23

Table 2.

Matrix.

Alternatives

A1

A2

A3

A4

A5

A6

A7

Time for operation beginning

(years)

3

4

2

2

2

3

2

Time to meet water demand

(years)

5

4

3

4

2

4

3

Water source

Guachacá

Magdalena

Toribio

Guachacá

Magdalena

Caribbean

Sea

Toribio

Córdoba

Caribbean

Sea

Piedras

Toribio

Toribio

Buritacá

Guachacá

Córdoba

Don Diego

Córdoba

Buritaca

Buriticá

Magdalena

New PTWP

Curval

Toribio

Toribio

Curval

Toribio

Curval

Desalination Toribio

Curval

Desalination

Curval

Toribio

Toribio

Number of expansions

7

4

5

2

3

1

1

2

1

5

6

1

4

New

Treatment

Capacity at

2064

New Treatment

Capacity per

PWTP (m

3

/s)

6.4

6

4.4

2

5.5

0.4

1

2

0.4

5

7

1

6

Total Treatment
Capacity (m

3

/s)

6.4

6

6.4

6.9

7.4

8

6

Number of pumping stations

13

6

12

10

10

15

6

Possibility of future expansions

No

Yes

No

No

No

Yes

Yes

System reliability (-)

1.9

2.0

1.4

2.0

2.0

1.3

2.0

Estimated Network Maximum

Pressure (PSI)

341

262

341

270

99

341

259

Number of conduction lines

4

2

5

3

2

6

6

Pipeline length in populated

area (Km)

0.0

11.9

0.0

17.9

0.0

0.0

11.9

Influence area at National

Parks (Ha)

1.7

834.7

0.2

14.1

0.1

0.2

582.2

Influence area at indigenous

reserves and sacred sites (Ha)

986.98

220.42

922.4

220.4

88.2

1048.7

88.2

Conduction line length (Km)

166.07

140.45

124.04

210.68

7.32

128.46

147.80

Percentage of water resources

withdrawn

0.14

0.00

0.59

0.00

0.50

0.64

0.50

Possibility of bringing water to

surrounding municipalities

No

Yes

No

Yes

No

No

Yes

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

11 of 23

4.4. Non Economic Evaluation

AHP, which was first proposed by Saaty [

56

], is a MCDA methodology that considers objective and

subjective criteria during the decision-making process in complex problems [

55

]. By the AHP, a problem

can be represented using a hierarchical structure. The purpose of the hierarchical structure is to
understand how the alternatives and criteria interrelate in relation to the problem [

33

]. The hierarchical

structure is composed of levels: the first level is the global goal or general objective; the intermediate
levels correspond to the criteria and sub-criteria that enable the global goal to be achieved; and the
alternatives to evaluate are included in the bottom level.

The AHP functions by creating a pairwise comparison, first within each level, and secondly among

the levels, to determine the preferences of decision makers. The first set of pairwise comparisons
is made among the criteria to reflect the preference of a decision maker regarding the usefulness of
each criterion toward solving a decision problem. These preferences are based on the judgment and
knowledge of the decision maker. The values obtained from this first set of pairwise comparisons will
be applied as the weight of each criterion. The second set of pairwise comparisons is a comparison of
alternatives regarding a particular criterion. The third comparison involves multiplying the result of
the second set of pairwise comparison by that of the first set of pairwise comparisons and ranking the
results [

33

]. Because the AHP requires several pairwise comparisons, a common problem is consistency

in the selections. To solve this problem, Saaty [

56

] proposed a consistency ratio to measure the

consistency in the judgements of decision makers. Ratios higher than 0.1 often require re-examination.
Based on this classification, the relative weights of the criteria and alternatives can be estimated
by a mathematical method that is known as estimation of eigenvalues [

55

]. The AHP allows to

show priorities of alternatives relative to the goal using a hierarchical structure. The AHP does not
require the use of complex calculations or computer systems [

33

]. The AHP is a flexible, participatory,

and appropriate methodology to structure complex decision problems and select the best alternative
that successfully satisfies the total objective of a decision problem.

The stakeholder preference was measured using the scale proposed by Saaty [

56

], as shown

in Table

3

.

Table 3.

The scale proposed by Saaty [

56

].

Numeric Rating

Definition

Explanation

1

Equal Importance

Two activities contribute equally to the objective

2

Weak or Slightly More Important

3

Moderate Importance

Experience and judgement slightly favour one

activity over the other

4

Moderate to Strong Significance

5

Strong Importance

Experience and judgement strongly favour one

activity over another

6

Strong to Very Strong

7

Very Strong or Demonstrated

Importance

An activity is favoured very strongly over

another; its dominance demonstrated in practice

8

Very Strong to Extreme

9

Extreme Importance

The evidence favouring one activity over another

is of the highest possible order of a

ffirmation

The eight experts completed an online survey; their judgments were pondered in their respective

groups as the geometric average of the recorded values. Figure

3

shows each group’s preference

regarding the main criteria of the decision problem. Although di

fferences exist among the interest

groups, operational time was consistently considered as the most important criterion. Infrastructure
setup was the second most important criterion for all groups, with the exception of Government,

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

12 of 23

which considered operational risk to be second in importance. A consensus was obtained for Social

and Environmental as the least relevant criteria among the main criteria. The relative weights of the
sub-criteria are presented in Figure

4

. Note that the judgement of the experts was systematically

consistent; thus, every evaluated matrix had a consistency ratio less than 0.1, and the total model a

value of 0.01.

Water 201911, x FOR PEER REVIEW 

 

14  of  23 

 

setup  was  the  second  most  important  criterion  for  all  groups,  with  the  exception  of  Government, 
which considered operational risk to be second in importance. A consensus was obtained for Social 
and Environmental as the least relevant criteria among the main criteria. The relative weights of the 
sub-criteria  are  presented  in  Figure  4.  Note  that  the  judgement  of  the  experts  was  systematically 
consistent; thus, every evaluated matrix had a consistency ratio less than 0.1, and the total model a 
value of 0.01.   

 

.

 

Figure 3. Relative criteria weight per group of interest. 

 

 

Figure 4. Hierarchical structure with relative weights. 

Figure 3.

Relative criteria weight per group of interest.

Water 201911, x FOR PEER REVIEW 

 

14  of  23 

 

setup  was  the  second  most  important  criterion  for  all  groups,  with  the  exception  of  Government, 
which considered operational risk to be second in importance. A consensus was obtained for Social 
and Environmental as the least relevant criteria among the main criteria. The relative weights of the 
sub-criteria  are  presented  in  Figure  4.  Note  that  the  judgement  of  the  experts  was  systematically 
consistent; thus, every evaluated matrix had a consistency ratio less than 0.1, and the total model a 
value of 0.01.   

 

.

 

Figure 3. Relative criteria weight per group of interest. 

 

 

Figure 4. Hierarchical structure with relative weights. 

Figure 4.

Hierarchical structure with relative weights.

To establish the ranking of alternatives, every alternative must be compiled and weighed

throughout the hierarchical structure. The software Expert Choice 11.5 was used to compile the results

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

13 of 23

of the decision problem. As shown in Figure

5

, the best option is A7, followed by A4 and A5; in this

order, Alternatives A2, A3, and A1 were similar, and the worst option was A6.

The robustness of the decision model was verified by a sensitivity analysis. Evaluating how the

ranking of alternatives changes as the weight of the main non-economic criteria varies is important.

The decision-making software facilitates the evaluation of the global alternatives performance as a

function of the weight of the main criteria. With respect to the operational time criterion, A7 had the
best performance until the weight of the criterion exceeded 0.79; the second and third places varied
among A2, A4, and A5. In relation to infrastructure setup, A7 performed the best when the weight
exceeded 0.09; the second and third places broadly varied among A1, A2, A4, and A5. Concerning the
operational risk, A7 was the best when the weight was less than 0.67, otherwise A5 performed better.
Regarding the Social and Environmental aspect, A7 was the best for weights below 0.32; however,

A4 performed better when the weight was higher. The sensitivity analysis shows that the ranking

obtained with the preference of a decision maker is generally consistent as the weight of the main
criteria varies. Note that A7 remained the best alternative in most scenarios, even when the weight of
the criteria extensively varied. Conversely, A3 and A6 were never in the first positions of the ranking
during the sensitivity analysis.

Water 201911, x FOR PEER REVIEW 

 

15  of  23 

 

To  establish  the  ranking  of  alternatives,  every  alternative  must  be  compiled  and  weighed 

throughout  the  hierarchical  structure.  The  software  Expert  Choice  11.5  was  used  to  compile  the 
results of the decision problem. As shown in Figure 5, the best option is A7, followed by A4 and A5; 
in this order, Alternatives A2, A3, and A1 were similar, and the worst option was A6.   

The robustness of the decision model was verified by a sensitivity analysis. Evaluating how the 

ranking of alternatives changes as the weight of the main non-economic criteria varies is important. 
The decision-making software facilitates the evaluation of the global alternatives performance as a 
function of the weight of the main criteria. With respect to the operational time criterion, A7 had the 
best performance until the weight of the criterion exceeded 0.79; the second and third places varied 
among A2, A4, and A5. In relation to infrastructure setup, A7 performed the best when the weight 
exceeded 0.09; the second and third places broadly varied among A1, A2, A4, and A5. Concerning 
the operational risk, A7 was the best when the weight was less than 0.67, otherwise A5 performed 
better.  Regarding  the  Social  and  Environmental  aspect,  A7  was  the  best  for  weights  below  0.32; 
however, A4 performed better when the weight was higher. The sensitivity analysis shows that the 
ranking obtained with the preference of a decision maker is generally consistent as the weight of the 
main  criteria varies.  Note that A7  remained  the  best alternative in  most scenarios,  even  when the 
weight of the criteria extensively varied. Conversely, A3 and A6 were never in the first positions of 
the ranking during the sensitivity analysis. 

 

.

 

Figure 5. Ranking of alternatives by implementing the AHP model. 

4.5. Economic Evaluation 

The  estimated  annual  pumping  and  treatment  costs  constitute  the  main  variable  cost  driver. 

These costs were estimated throughout a 50-year planning horizon and are presented in Figure 6 and 
Figure 7, respectively. Saldarriaga et al. [58] have estimated the construction costs for each alternative 
by considering the costs of excavation, pipelines, pumping stations, and new PWTPs. As shown in 
Table 4, the total costs of the alternatives have been valued as the sum of the discounted operative 
costs  during  the  project  lifespan  and  the  associated  constructive  costs.  In  addition  to  the  long 
lifespans of water supply infrastructure projects, the operative costs account for the majority of the 
total costs and represent the main difference among alternatives.   

Figure 5.

Ranking of alternatives by implementing the AHP model.

4.5. Economic Evaluation

The estimated annual pumping and treatment costs constitute the main variable cost driver.

These costs were estimated throughout a 50-year planning horizon and are presented in Figures

6

and

7

, respectively. Saldarriaga et al. [

58

] have estimated the construction costs for each alternative

by considering the costs of excavation, pipelines, pumping stations, and new PWTPs. As shown in

Table

4

, the total costs of the alternatives have been valued as the sum of the discounted operative

costs during the project lifespan and the associated constructive costs. In addition to the long lifespans
of water supply infrastructure projects, the operative costs account for the majority of the total costs
and represent the main di

fference among alternatives.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

14 of 23

Water 201911, x FOR PEER REVIEW 

 

16  of  23 

 

 

Figure 6. Estimated annual pumping costs by alternative. 

 

Figure 7. Estimated annual treatment costs by alternative. 

Table 4. Costs summary by alternatives. 

Alternatives 

PVC of 

Treatment (US$) 

PVC of Pumping 

(US$) 

PVC of Variable 

Costs (US$) 

Construction Costs 

(US$) 

Total Costs 

(US$) 

A1 

321,827,094 

323,299,388 

645,126,482 

47,440,763 

692,567,245 

A2 

359,423,907 

86,292,406 

445,716,313 

43,313,450 

489,029,763 

A3 

363,610,315 

51,672,610 

415,282,925 

44,998,266 

460,281,191 

A4 

608,286,307 

114,545,941 

722,832,247 

67,357,810 

790,190,057 

A5 

770,633,787 

26,119,599 

796,753,386 

70,747,453 

867,500,839 

A6 

379,643,598 

251,435,120 

631,078,718 

52,857,836 

683,936,554 

A7 

424,633,418 

174,198,263 

598,831,681 

38,782,207 

637,613,888 

*PVC: present value of the cost. 

4.6. Global Evaluation 

Figure 8 shows the performance index (PI) for each alternative when varying the weight given 

to the cost along its range. Given a certain cost weight, note that the alternative with the highest PI is 
the best among its group. The graph illustrates the sensitivity of the ranking to the variation of the 
cost weight: A7 remains the best alternative when the weight of the cost criterion is lower than 0.56. 

Figure 6.

Estimated annual pumping costs by alternative.

Water 201911, x FOR PEER REVIEW 

 

16  of  23 

 

 

Figure 6. Estimated annual pumping costs by alternative. 

 

Figure 7. Estimated annual treatment costs by alternative. 

Table 4. Costs summary by alternatives. 

Alternatives 

PVC of 

Treatment (US$) 

PVC of Pumping 

(US$) 

PVC of Variable 

Costs (US$) 

Construction Costs 

(US$) 

Total Costs 

(US$) 

A1 

321,827,094 

323,299,388 

645,126,482 

47,440,763 

692,567,245 

A2 

359,423,907 

86,292,406 

445,716,313 

43,313,450 

489,029,763 

A3 

363,610,315 

51,672,610 

415,282,925 

44,998,266 

460,281,191 

A4 

608,286,307 

114,545,941 

722,832,247 

67,357,810 

790,190,057 

A5 

770,633,787 

26,119,599 

796,753,386 

70,747,453 

867,500,839 

A6 

379,643,598 

251,435,120 

631,078,718 

52,857,836 

683,936,554 

A7 

424,633,418 

174,198,263 

598,831,681 

38,782,207 

637,613,888 

*PVC: present value of the cost. 

4.6. Global Evaluation 

Figure 8 shows the performance index (PI) for each alternative when varying the weight given 

to the cost along its range. Given a certain cost weight, note that the alternative with the highest PI is 
the best among its group. The graph illustrates the sensitivity of the ranking to the variation of the 
cost weight: A7 remains the best alternative when the weight of the cost criterion is lower than 0.56. 

Figure 7.

Estimated annual treatment costs by alternative.

Table 4.

Costs summary by alternatives.

Alternatives

PVC of

Treatment (US$)

PVC of

Pumping (US$)

PVC of Variable

Costs (US$)

Construction

Costs (US$)

Total Costs

(US$)

A1

321,827,094

323,299,388

645,126,482

47,440,763

692,567,245

A2

359,423,907

86,292,406

445,716,313

43,313,450

489,029,763

A3

363,610,315

51,672,610

415,282,925

44,998,266

460,281,191

A4

608,286,307

114,545,941

722,832,247

67,357,810

790,190,057

A5

770,633,787

26,119,599

796,753,386

70,747,453

867,500,839

A6

379,643,598

251,435,120

631,078,718

52,857,836

683,936,554

A7

424,633,418

174,198,263

598,831,681

38,782,207

637,613,888

PVC: present value of the cost.

4.6. Global Evaluation

Figure

8

shows the performance index (PI) for each alternative when varying the weight given to

the cost along its range. Given a certain cost weight, note that the alternative with the highest PI is
the best among its group. The graph illustrates the sensitivity of the ranking to the variation of the

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

15 of 23

cost weight: A7 remains the best alternative when the weight of the cost criterion is lower than 0.56.
However, when the weight exceeds 0.56, A3 and A2 are superior,r due to their lower cost. A4 and A5
rank second and third on the benefits scale but are the most expensive; thus, when the weight given to
the cost criterion exceeds 0.32 and 0.19, respectively, they are exceeded by A3 and A2, which are equal.

A1 and A6, which have poor performance in benefits, improve in the ranking only because they are

less expensive than A3 and A2.

Water 201911, x FOR PEER REVIEW 

 

17  of  23 

 

However, when the weight exceeds 0.56, A3 and A2 are superior,r due to their lower cost. A4 and A5 
rank second and third on the benefits scale but are the most expensive; thus, when the weight given 
to the cost criterion exceeds 0.32 and 0.19, respectively, they are exceeded by A3 and A2, which are 
equal. A1 and A6, which have poor performance in benefits, improve in the ranking only because 
they are less expensive than A3 and A2.   

 

 

Figure 8. Performance index (PI) variation as a function of the cost weight. 

Once the weight of the cost criterion is selected, the PI will establish a new ranking of alternatives 

that  considers  both  non-economic  criteria  and  economic  criteria.  In  their  study,  Saldarriaga  [58] 
determined that the weight of the total costs for this project is 0.22. The ranking is shown in Table 5. 
Alternative 7 is at the top of the ranking, followed by A4; A2, A3, and A5 performed similarly in the 
intermediate positions; and at the end of the rank, A6 and A1 have the lowest scores.   

Table 5. AHP performance index score and rank when the cost weight is 0.22. 

Rank  Alternative 

AHP Performance 

Index Score 

A7 

0.618 

A4 

0.519 

A2 

0.466 

A3 

0.465 

A5 

0.448 

A1 

0.406 

A6 

0.272 

5. Comparison with Previous Studies 

Given the critical situation of Santa Marta’s water supply, Universidad de los Andes, Findeter, 

and Metroagua S.A E.S.P collaborated to develop studies with the purpose of strengthening the city’s 
water infrastructure for the next 50 years. The product of this research was subsequently published 
by  Saldarriaga  et  al.  [58]  in  a  report  that  includes  demographic  and  water  demand  forecasts,  an 
anthropologic  study,  a  characterization  of  surface  and  underground  sources  of  water,  a  water 
network optimization, and an alternatives evaluation. This study seeks to complement this previous 
study  and  strengthen  the  tools  that  support  the  decision-making  process  of  water  resources 
management for the city.   

Figure 8.

Performance index (PI) variation as a function of the cost weight.

Once the weight of the cost criterion is selected, the PI will establish a new ranking of alternatives

that considers both non-economic criteria and economic criteria. In their study, Saldarriaga [

58

]

determined that the weight of the total costs for this project is 0.22. The ranking is shown in Table

5

.

Alternative 7 is at the top of the ranking, followed by A4; A2, A3, and A5 performed similarly in the

intermediate positions; and at the end of the rank, A6 and A1 have the lowest scores.

Table 5.

AHP performance index score and rank when the cost weight is 0.22.

Rank

Alternative

AHP Performance Index Score

1

A7

0.618

2

A4

0.519

3

A2

0.466

4

A3

0.465

5

A5

0.448

6

A1

0.406

7

A6

0.272

5. Comparison with Previous Studies

Given the critical situation of Santa Marta’s water supply, Universidad de los Andes, Findeter,

and Metroagua S.A E.S.P collaborated to develop studies with the purpose of strengthening the city’s

water infrastructure for the next 50 years. The product of this research was subsequently published by

Saldarriaga et al. [

58

] in a report that includes demographic and water demand forecasts, an anthropologic

study, a characterization of surface and underground sources of water, a water network optimization,
and an alternatives evaluation. This study seeks to complement this previous study and strengthen the
tools that support the decision-making process of water resources management for the city.

A comparison of the results of this case study with the previous analysis for this decision-making

problem is desired. Saldarriaga et al. [

58

] implemented a multiattribute utility theory (MAUT) model to

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

16 of 23

determine the ranking of the seven alternatives of this project. MAUT is based on ordinal comparison
of each alternatives using a multiattribute utility function. The most common approach of MAUT for
evaluating multiattribute alternatives is to use an additive representation [

35

]:

U

(

A

i

) =

X

∇ j

w

j

v

j

(

A

i

)

(2)

where U is an additive multiattribute utility function, A

i

is the alternative i, w

j

is the weight of j

criterion or attribute, and v

j

is an utility function associated to j. The authors weighted all criteria

(including the costs) and determined a unique performance score.

Figure

9

provides a comparison of the alternatives scores relative to the implemented methodology,

namely, the AHP (performance index) and MAUT models. In general, the AHP score is lower than the
score calculated by MAUT; however, similarities exist in the ranking obtained by both models. Table

6

shows the rankings obtained with the AHP and MAUT methods, where A7 is the best alternative,

A2 ranks third, and A6 ranks last.

Water 201911, x FOR PEER REVIEW 

 

18  of  23 

 

A comparison of the results of this case study with the previous analysis for this decision-making 

problem is desired. Saldarriaga et al. [58] implemented a multiattribute utility theory (MAUT) model 
to  determine  the  ranking  of  the  seven  alternatives  of  this  project.  MAUT  is  based  on  ordinal 
comparison of each alternatives using a multiattribute utility function. The most common approach 
of MAUT for evaluating multiattribute alternatives is to use an additive representation [35]: 

𝑈(𝐴

𝑖

) = ∑ 𝑤

𝑗

𝑣

𝑗

(𝐴

𝑖

)

∇𝑗

 

(2) 

where  𝑈  is an additive multiattribute utility function,  𝐴

𝑖

  is the alternative  𝑖,  𝑤

𝑗

  is the weight of  𝑗 

criterion or attribute, and  𝑣

𝑗

  is an utility function associated to 𝑗. The authors weighted all criteria 

(including the costs) and determined a unique performance score.   

Figure  9  provides  a  comparison  of  the  alternatives  scores  relative  to  the  implemented 

methodology, namely, the AHP (performance index) and MAUT models. In general, the AHP score 
is lower than the score calculated by MAUT; however, similarities exist in the ranking obtained by 
both models. Table 6 shows the rankings obtained with the AHP and MAUT methods, where A7 is 
the best alternative, A2 ranks third, and A6 ranks last.   

 

Figure 9. Alternatives’ scores by methodology (AHP and MAUT). 

Table 6. Alternatives’ rankings by methodology (AHP and MAUT). 

Rank  AHP    MAUT 

A7 

A7 

A4 

A5 

A2 

A2 

A3 

A1 

A5 

A3 

A1 

A4 

A6 

A6 

Additionally, Figure 10 shows a dispersion plot that compares the normalized scores for both 

methodologies. If the two models were consistent, a linear relation would be expected. In this case, 
the obtained coefficient of correlation (ρ) between the alternative’s score using AHP and MAUT was 
0.876. However, is noteworthy that A4 and A5 diverge as a function of the method. MAUT penalizes 
A4, whereas the AHP promotes A4; the inverse case occurs with A5. This change can be attributed to 

Figure 9.

Alternatives’ scores by methodology (AHP and MAUT).

Table 6.

Alternatives’ rankings by methodology (AHP and MAUT).

Rank

AHP

MAUT

1

A7

A7

2

A4

A5

3

A2

A2

4

A3

A1

5

A5

A3

6

A1

A4

7

A6

A6

Additionally, Figure

10

shows a dispersion plot that compares the normalized scores for both

methodologies. If the two models were consistent, a linear relation would be expected. In this case,
the obtained coe

fficient of correlation (ρ) between the alternative’s score using AHP and MAUT was

0.876. However, is noteworthy that A4 and A5 diverge as a function of the method. MAUT penalizes

A4, whereas the AHP promotes A4; the inverse case occurs with A5. This change can be attributed

to the method by which the preference of the stakeholders was measured. Note that the remaining

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

17 of 23

alternatives and their scores are consistent, and the scores given to A2, A3, A4, and A5 are similar
using both methodologies. Considering the ranking obtained by the MAUT and AHP models, we
obtained the best option (A7), followed by a group of average alternatives (A2, A3, A4, A5) and a
group of alternatives with poor performance (A1 and A6).

Water 201911, x FOR PEER REVIEW 

 

19  of  23 

 

the  method  by  which  the  preference  of  the  stakeholders  was  measured.  Note  that  the  remaining 
alternatives and their scores are consistent, and the scores given to A2, A3, A4, and A5 are similar 
using both methodologies. Considering the ranking obtained by the MAUT and AHP models, we 
obtained the best option (A7), followed by a group of average alternatives (A2, A3, A4, A5) and a 
group of alternatives with poor performance (A1 and A6). 

 

Figure 10. Normalized scores comparison for both methodologies. 

Characterization of the performance of each alternative is useful as a tool to support decision-

making related to the described problem. If only non-economic criteria are considered, A7, A4, and 
A5 systematically perform best even with strong weight variation. Conversely, when non-economic 
and economic criteria are simultaneously considered, A2 substitutes A5 in the ranking because A2 is 
less  expensive.  However,  A7  remains  at  the  top  of  the  ranking.  Note  that  the  ranking  is  highly 
sensitive to variations in the weight of the economic criterion. As we compare the results of AHP 
with those of MAUT, a fair match is obtained with the best option and worst option (A7 and A6, 
respectively),  and  a  group  of  intermediate  alternatives  is  also  obtained.  These  mid-ranking 
alternatives are very similar, especially with the MAUT results.   

These  results  support  the  implementation  of  A7,  given  its  outstanding  performance  when 

assessed against the selected criteria when corroborated with sensitivity analyses and compared with 
other  methodologies.  If  A7  is  implemented  as  planned,  Toribio  PWTP  will  treat  water  from  the 
Magdalena, Toribio, and Córdoba rivers (Figure 11). To complement the analysis of the A7 features, 
Figure 12 shows the treatment capacity, water demand, and system losses throughout the lifecycle of 
the  project.  The  first  stage  of  the  new  plant  should  commence  operations  two  years  after  the 
beginning of construction, and, within three years, the city is expected to eliminate their water supply 
deficit. In addition to addressing the water shortage, the total water demand for subsequent years 
will  be  broadly  satisfied,  including  the  domestic,  commercial,  industrial,  and  increasing  tourist 
demand for the city. Water supply management also includes the project’s implementation of a long-
term plan of continuous technical losses and PWTP water requirement reduction implemented by 
the local water utility (i.e., initial system losses represent approximately 43%, and reductions of 17% 
are expected by 2035). A7 is a roadmap for providing safe water to Santa Mater City over the next 50 
years.   

Figure 10.

Normalized scores comparison for both methodologies.

Characterization of the performance of each alternative is useful as a tool to support

decision-making related to the described problem. If only non-economic criteria are considered, A7, A4,
and A5 systematically perform best even with strong weight variation. Conversely, when non-economic
and economic criteria are simultaneously considered, A2 substitutes A5 in the ranking because A2 is
less expensive. However, A7 remains at the top of the ranking. Note that the ranking is highly sensitive
to variations in the weight of the economic criterion. As we compare the results of AHP with those of
MAUT, a fair match is obtained with the best option and worst option (A7 and A6, respectively), and a
group of intermediate alternatives is also obtained. These mid-ranking alternatives are very similar,
especially with the MAUT results.

These results support the implementation of A7, given its outstanding performance when assessed

against the selected criteria when corroborated with sensitivity analyses and compared with other
methodologies. If A7 is implemented as planned, Toribio PWTP will treat water from the Magdalena,

Toribio, and Córdoba rivers (Figure

11

). To complement the analysis of the A7 features, Figure

12

shows

the treatment capacity, water demand, and system losses throughout the lifecycle of the project. The first
stage of the new plant should commence operations two years after the beginning of construction,
and, within three years, the city is expected to eliminate their water supply deficit. In addition to
addressing the water shortage, the total water demand for subsequent years will be broadly satisfied,
including the domestic, commercial, industrial, and increasing tourist demand for the city. Water
supply management also includes the project’s implementation of a long-term plan of continuous
technical losses and PWTP water requirement reduction implemented by the local water utility (i.e.,
initial system losses represent approximately 43%, and reductions of 17% are expected by 2035). A7 is
a roadmap for providing safe water to Santa Mater City over the next 50 years.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

18 of 23

Water 201911, x FOR PEER REVIEW 

 

20  of  23 

 

 

Figure 11. Selected alternative characteristics and geographical location, Adapted from [58]. 

 

 

Figure 12. Alternative 7: water demand, treatment capacity and system losses. 

6. Limitations and Future Research 

Throughout this paper, we have presented a MCDA methodology and a case study for water 

infrastructure  planning  using  a  supply-based  approach.  This  approach  has  important  limitations, 
such as the supply uncertainty in a climate change scenario and the non-inclusion of the resilience 
criterion, which describes how quickly a system is likely to recover after the occurrence of a failure 
[49,59]. For this reason, the implementation of water demand management strategies to complement 
supply-oriented efforts is essential. As an illustration, one limitation of this case study was to assume 
a static per capita water demand during the lifecycle of the project, which was performed given legal 
requirements  for  new  water  supply  infrastructure  projects  in  Colombia.  However,  managing  and 
reducing the per capita water demand represents several economical and sustainability benefits and 
important challenges for water planners [60–63]. For example, Cooley and Parishamban [64] discovered 
that  urban  water  conservation  and  efficiency  measures  are  the  most  cost-effective  measures  for 

Figure 11.

Selected alternative characteristics and geographical location, Adapted from [

58

].

Water 201911, x FOR PEER REVIEW 

 

20  of  23 

 

 

Figure 11. Selected alternative characteristics and geographical location, Adapted from [58]. 

 

 

Figure 12. Alternative 7: water demand, treatment capacity and system losses. 

6. Limitations and Future Research 

Throughout this paper, we have presented a MCDA methodology and a case study for water 

infrastructure  planning  using  a  supply-based  approach.  This  approach  has  important  limitations, 
such as the supply uncertainty in a climate change scenario and the non-inclusion of the resilience 
criterion, which describes how quickly a system is likely to recover after the occurrence of a failure 
[49,59]. For this reason, the implementation of water demand management strategies to complement 
supply-oriented efforts is essential. As an illustration, one limitation of this case study was to assume 
a static per capita water demand during the lifecycle of the project, which was performed given legal 
requirements  for  new  water  supply  infrastructure  projects  in  Colombia.  However,  managing  and 
reducing the per capita water demand represents several economical and sustainability benefits and 
important challenges for water planners [60–63]. For example, Cooley and Parishamban [64] discovered 
that  urban  water  conservation  and  efficiency  measures  are  the  most  cost-effective  measures  for 

Figure 12.

Alternative 7: water demand, treatment capacity and system losses.

6. Limitations and Future Research

Throughout this paper, we have presented a MCDA methodology and a case study for water

infrastructure planning using a supply-based approach. This approach has important limitations, such
as the supply uncertainty in a climate change scenario and the non-inclusion of the resilience criterion,

which describes how quickly a system is likely to recover after the occurrence of a failure [

49

,

59

]. For this

reason, the implementation of water demand management strategies to complement supply-oriented
e

fforts is essential. As an illustration, one limitation of this case study was to assume a static per capita

water demand during the lifecycle of the project, which was performed given legal requirements for

new water supply infrastructure projects in Colombia. However, managing and reducing the per capita

water demand represents several economical and sustainability benefits and important challenges

for water planners [

60

63

]. For example, Cooley and Parishamban [

64

] discovered that urban water

conservation and e

fficiency measures are the most cost-effective measures for satisfying current and

future water needs in California. Additionally, the UK Environmental Agency [

65

] presented the

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

19 of 23

economic, social, and environmental benefits of achieving water neutrality (i.e., total water consumed
after development is equal to or less than total water use prior to development) for the Thames Gateway,

which is the largest regeneration area in the UK.

Benefits of water demand management (WDM) can also impact the management of the new

water supply system in Santa Marta. If demand reduction is incentivized, several benefits, such as

the previously mentioned benefits and the deferment of PWTP expansions, are expected over time.

Thus, future studies should articulate e

fforts of various stakeholders to evaluate which structural and

non-structural measures or combination of measures will be more e

fficient to reduce the per capita

demand in the city. Demand reduction is a continuous water management issue throughout the project
lifecycle; however, a fixed demand value was required for the initial planning stage in Santa Marta City.

Further research should also be focused on the following planning stages of the Santa Marta’s water

supply system (WSS). According to highly developed countries’ best water management practices,
one of the main future considerations is to design a water safety plan (WSP) for the city, in order to
assess and manage the water supply risk from the source to the final user [

16

]. A WSP is necessary

to facilitate the decision-making process to properly manage the WSS under di

fferent scenarios (e.g.,

emergency situations, climate change, variability of water sources’ quantity

/quality, etc.).

Moreover, the use of MCDA techniques, such as the AHP, has intrinsic limitations. The AHP

is one of the most popular MCDA techniques, although, it has been criticized for the issue of rank
reversal (i.e., the relative rankings of the alternatives would change if an alternative were added or
deleted) [

66

,

67

]. However, Wang and Luo [

68

] have shown that the rank reversal phenomenon occurs

not only in the AHP, but also in many other MCDA approaches. Practitioners and researchers need
to be aware of this limitation for MCDA techniques, particularly when selecting a group of feasible
alternatives to consider in the decision-making process.

7. Conclusions

MCDA methods are powerful decision-making support tools for water infrastructure supply

planning [

31

,

32

,

37

]. A MCDA methodology that treats economic criteria separately from non-economic

criteria is proposed to address the water supply infrastructure planning problem. This structured
methodology represents a new approach to address this type of decision-making problem. The use
of four main non-economic criteria, which are adaptable to other possible applications, is proposed:
operational time, infrastructure setup, operational risk, and socio-environmental. The selected economic
criterion was the present value (PV) of the costs. A global evaluation that combines non-economic
assessments and economic assessments was developed to analyze the tradeo

ff between benefits and

net present of the costs.

This decision-making methodology enables stakeholders to evaluate the alternatives of the

complex water supply problem in a systemic manner. The separation between economic criteria
and non-economic criteria may increase the understanding of qualitative benefits and the financial

performance of each alternative. Given a budget, decision makers can easily establish the economic

importance relative to benefits to determine the best alternative. The selected alternative will represent
the best tradeo

ff between benefits and costs by considering the preference of several stakeholders,

given a budget. This tradeo

ff can produce a structural, rigorous, transparent, and auditable approach

to easily understand and communicate the decision-making process for complex water related projects.

A common concern during the decision-making process is the selection of an adequate method

for measuring and compiling the preferences of all stakeholders and decision makers. In this case
study, we highlighted the important di

fferences between the AHP and MAUT during the preference

elicitation process. The AHP requires the estimation of the eigenvalues of several matrices and the

weighted sum calculation by the hierarchical structure, whereas MAUT requires a weighted sum

of utility functions. The convenience of the methods varies with the complexity of the problem
and the number of criteria. For example, using MAUT in complex multi-criteria problems, such as

water-related issues, becomes wasteful, as the utility functions and weights exponentially increase when

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

20 of 23

the decision-making structure expands. This finding creates the need to simplify the decision-making

problem [

38

,

58

]. Using a pairwise comparison method, such as the AHP, ensures accuracy during the

relative judgement of elements and enables the stakeholders to develop a structured perspective of
the problem throughout all decision processes, which simplifies the preference elicitation process [

55

].

Additionally, the available software facilitates the calculations, and the weights estimation e

ffort is

feasible even in complex problems with several stakeholders. Is necessary to consider the computation

processes and tradeo

ffs of different MCDA techniques, such as the AHP and MAUT, to perform a

non-economic evaluation.

The developed MCDA methodology was applied to Santa Marta, Colombia, which has a current

water shortage and urgently needs a new water supply infrastructure. An AHP model was employed

to determine the preferences of various stakeholders regarding non-economic criteria for water supply
infrastructure alternatives, and to enable the ranking of alternatives to provide water in the city. After

variations in the weights of the economic criteria, the top-ranked alternative remained. The proposed

methodology supported the decision-making process that achieved the selection of the alternative
that will address the water supply problem in Santa Marta. The recommended alternative has been
implemented in Santa Marta since 2018.

Finally, our developed MCDA methodology could be applied to any city that urgently needs to

expand its capacity to satisfy the increasing water demand. Our framework is designed to support
this decision based on economic and non-economic criteria, such as operational time, infrastructure
setup, operational risk, and socio-environmental considerations. The separation of economic and
non-economic criteria might increase the understanding of qualitative benefits and the financial

performance of each alternative. The global evaluation index represents the best tradeo

ff between

benefits and cost, considering the preference of several stakeholders.

Author Contributions:

Conceptualization, J.S.; Methodology, S.C.; Software, H.A.-D.; Validation H.A.-D.; Formal

Analysis, R.S.; Investigation, H.A.-D.; Writing-Original Draft Preparation H.A.-D. & S.C.; Writing-Review &

Editing, J.S. & R.S.; Supervision, J.S.

Funding:

This research received no external funding.

Acknowledgments:

We appreciate and thank the anonymous reviewers for helpful comments that led to an

overall improvement of the manuscript.

Conflicts of Interest:

The authors declare no conflict of interest.

References

1.

United Nations Development Programme. Human Development Report 2006. Beyond Scarcity: Power, Poverty
and the Global Water Crisis; United Nations Development Programme: New York, NY, USA, 2006.

2.

United Nations 64

/292. The Human Right to Water and Sanitation. Available online:

http:

//www.un.org/es/

comun

/docs/?symbol=A/RES/64/292&lang=E

(accessed on 18 August 2016).

3.

UNICEF; World Health Organization. Progress on Sanitation and Drinking Water–2015 Update and MDG

Assessment; WHO Press: New York, NY, USA, 2015; ISBN 978-92-4-150914-5.

4.

Montgomery, M.A.; Elimelech, M. Water and sanitation in developing countries: Including health in the
equation. Environ. Sci. Technol. 2007, 41, 17–24. [

CrossRef

]

5.

Service, R.F. Desalination Freshens Up. Science (80) 2006, 313, 1088–1090. [

CrossRef

] [

PubMed

]

6.

Santos-Pereira, L.; Cordery, I.; Iacovides, I. Coping with Water Scarcity: Adressing the Challenges; Springer
Science & Business Media: Paris, France, 2009; ISBN 9788578110796.

7.

WWAP. The United Nations World Water Development Report 2016: Water and Jobs; UNESCO: Paris, France,
2016; ISBN 9789231001468.

8.

Elimelech, M.; Phillip, W.A. The Future of Seawater and the Environment: Energy, Technology, and the
Environment. Science (80) 2011, 333, 712–718. [

CrossRef

] [

PubMed

]

9.

Food and Agriculture Organization of the United Nations. Coping with Water Scarcity: An Action Framework
for Agriculture and Food Security; FAO Publications: Rome, Italy, 2012; ISBN 9789251073049.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

21 of 23

10.

Watson, D.; Arrowsmith, C.; Goudey, R. Water availability: A regional water quality problem. Int. J. River

Basin Manag. 2003, 1, 321–330. [

CrossRef

]

11.

Dearmont, D.; McCarl, D.; Tolman, A. Costs of water treatment due to diminished water quality: A case
study in Texas. Water Resour. Res. 1998, 34, 849–853. [

CrossRef

]

12.

Liu, J.; Liu, Q.; Yang, H. Assessing water scarcity by simultaneously considering environmental flow
requirements, water quantity, and water quality. Ecol. Indic. 2016, 60, 434–441. [

CrossRef

]

13.

United Nations Department of Economic and Social A

ffairs. World Urbanization Prospects: The 2014 Revision;

United Nations Department of Economic and Social A

ffairs: New York, NY, USA, 2015.

14.

OECD. OECD Environmental Outook to 2050: The Consequences of Inaction; OECD: Paris, France, 2012.

15.

Pietrucha-Urbanik, K.; ˙Zelazko, A. Approaches to assess water distribution failure. Period. Polytech. Civ. Eng.
2017

, 61, 632–639. [

CrossRef

]

16.

Pietrucha-Urbanik, K.; Tchórzewska-Cie´slak, B. Approaches to failure risk analysis of the water distribution
network with regard to the safety of consumers. Water 2018, 10, 1679. [

CrossRef

]

17.

Bartram, J.; Corrales, L.; Davison, A.; Deere, D.; Drury, D.; Gordon, B.; Howard, G.; Rinehold, A.; Stevens, M.

Water Safety Plan Manual (WSP Manual): Step-by-Step Risk Management for Drinking-Water Suppliers; World

Health Organization, International Water Association, Eds.; World Health Organization: Geneva, Switzerland,
2009; ISBN 978-92-4-156263-8.

18.

Pietrucha-Urbanik, K.; Tchórzewska-Cie´slak, B. Water Supply System operation regarding consumer
safety using Kohonen neural network.

In Safety, Reliability And Risk Analysis: Beyond The Horizon;

Steenbergen, R.D.J.M., van Gelder, P.H.A.J.M., Miraglia, S., Vrouwenvelder, A.C.W.M., Eds.; Taylor &
Francis Group: London, UK, 2014; pp. 1115–1120. ISBN 9781138001237.

19.

Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology
for water purification in the coming decades. Nature 2008, 452, 301–310. [

CrossRef

]

20.

Eggimann, S.; Mutzner, L.; Wani, O.; Schneider, M.Y.; Spuhler, D.; Moy de Vitry, M.; Philipp, B.; Maurer, M.

The potential of knowing more—A review of data-driven urban water management. Environ. Sci. Technol.

2017

, 51, 2538–2553. [

CrossRef

]

21.

Lienert, J.; Scholten, L.; Ehher, C.; Maurer, M. Structured decision-making for sustainable water infrastructure

planning and four future scenarios. EURO J. Decis. Process. 2015, 242, 107–140. [

CrossRef

]

22.

Kang, M.-G.; Lee, G.-M. Multicriteria Evaluation of Water Resources Sustainability in the Context of

Watershed Management1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 813–827. [

CrossRef

]

23.

Chung, E.S.; Lee, K.S. Prioritization of water management for sustainability using hydrologic simulation
model and multicriteria decision making techniques. J. Environ. Manag. 2009, 90, 1502–1511. [

CrossRef

]

24.

Al-Zu’ bi, Y.; Shatanawi, M.; Al-Jayoussi, O.; Al-Kharabsheh, A. Application of Decision Support System
for Sustainable Management of Water Resources in the Azraq Basin—Jordan. Water Int. 2002, 27, 532–541.
[

CrossRef

]

25.

Ennaouri, I.; Fuamba, M. New Integrated Condition-Assessment Model for Combined Storm-Sewer Systems.
J. Water Resour. Plan. Manag. 2013, 139, 53–64. [

CrossRef

]

26.

Ahammed, F.; Alankarage-Hewa, G.; Argue, J.R. Applying multi-criteria decision analysis to select WSUD
and LID technologies. Water Sci. Technol. Water Supply 2012, 12, 844–853. [

CrossRef

]

27.

Martin, C.; Ruperd, Y.; Legret, M. Urban stormwater drainage management: The development of a multicriteria
decision aid approach for best management practices. Eur. J. Oper. Res. 2007, 181, 338–349. [

CrossRef

]

28.

Benzerra, A.; Cherrared, M.; Chocat, B.; Cherqui, F.; Zekiouk, T. Decision support for sustainable urban
drainage system management: A case study of Jijel, Algeria. J. Environ. Manag. 2012, 101, 46–53. [

CrossRef

]

29.

Kim, Y.; Chung, E.-S.; Jun, S.-M.; Kim, S.U. Prioritizing the best sites for treated wastewater instream use in
an urban watershed using fuzzy TOPSIS. Resour. Conserv. Recycl. 2013, 73, 23–32. [

CrossRef

]

30.

Zheng, J.; Egger, C.; Lienert, J. A scenario-based MCDA framework for wastewater infrastructure planning
under uncertainty. J. Environ. Manag. 2016, 183, 895–908. [

CrossRef

]

31.

Hajkowicz, S.; Collins, K. A review of multiple criteria analysis for water resource planning and management.

Water Resour. Manag. 2007, 21, 1553–1566. [

CrossRef

]

32.

Lai, E.; Lundie, S.; Ashbolt, N.J. Review of multi-criteria decision aid for integrated sustainability assessment
of urban water systems. Urban Water J. 2008, 5, 315–327. [

CrossRef

]

33.

Castillo, M. Toma de Decisiones en las Empresas: Entre el arte y la Técnica; Ediciones Uniandes: Bogotá, Colombia, 2006.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

22 of 23

34.

Roy, B. Paradigms and challenges. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J.,
Greco, S., Ehrgott, M., Eds.; Springer Science

+ Business Media, Inc.: Boston, MA, USA, 2005; pp. 19–39.

ISBN 978-0-387-23067-2.

35.

Figueira, J.; Greco, S.; Ehrgott, M. (Eds.) Multiple Criteria Decision Analysis: State of Art Surveys; Springer
Science

+ Business Media, Inc.: Boston, MA, USA, 2005; ISBN 9788578110796.

36.

Hajkowicz, S.; Higgins, A. A comparison of multiple criteria analysis techniques for water resource
management. Eur. J. Oper. Res. 2008, 184, 255–265. [

CrossRef

]

37.

Kabir, G.; Sadiq, R.; Tesfamariam, S. A review of multi-criteria decision-making methods for infrastructure
management. Struct. Infrastruct. Eng. 2014, 10, 1176–1210. [

CrossRef

]

38.

Scholten, L.; Schuwirth, N.; Reichert, P.; Lienert, J. Tackling uncertainty in multi-criteria decision analysis—An
application to water supply infrastructure planning. Eur. J. Oper. Res. 2015, 242, 243–260. [

CrossRef

]

39.

Okeola, O.G.; Sule, B.F. Evaluation of management alternatives for urban water supply system using
Multicriteria Decision Analysis. J. King Saud Univ. Eng. Sci. 2012, 24, 19–24. [

CrossRef

]

40.

Jaber, J.; Mohsen, M. Evaluation of non-conventional water resources supply in Jordan. Desalination 2001,

136, 83–92. [

CrossRef

]

41.

Abrishamchi, A.; Ebrahimian, A.; Tajrishi, M.; Mariño, M. A Case study: Application of multicriteria decision
making to urban water supply. J. Water Resour. Plan. Manag. 2005, 131, 326. [

CrossRef

]

42.

Kodikara, P.N.; Perera, B.J.C.; Kularathna, M.D.U.P. Stakeholder preference elicitation and modelling in
multi-criteria decision analysis—A case study on urban water supply. Eur. J. Oper. Res. 2010, 206, 209–220.
[

CrossRef

]

43.

Clemen, R.; Reilly, T. Making Hard Decisions with Decision Tools, 2nd ed.; Brooks

/Cole: Belmont, CA, USA, 2001.

44.

Zarghami, M.; Szidarovszky, F. Multicriteria Analysis: Applications to Water and Environment Management;
Springer-Verlag: Berlin, Germany, 2011; ISBN 3642179371.

45.

Lü, Y.P.; Yang, K.; Che, Y.; Shang, Z.Y.; Zhu, H.F.; Jian, Y.; Lu, Y.P. Cost-efectiveness-based multicriteria
optimization for sustainable rainwater utilization: A case study in Shanghai. Urban Water J. 2013, 10, 127–143.
[

CrossRef

]

46.

Saaty, T.L. Mathematical Principles of Decision Making (Principia Mathematica Decernendi); RWS Publications:
Pittsburgh, PA, USA, 2010.

47.

Edwards, W.; Miles, R.F., Jr.; Von Winterfeldt, D. (Eds.) Advances in Decision Analysis: From Foundations to

Applications; Cambridge University Press: Cambridge, UK, 2007.

48.

Cruz, M.G. Modeling, Measuring and Hedging Operational Risk; John Wiley & Sons: New York, NY, USA, 2002.

49.

Zhang, C.; Xu, B.; Li, Y.; Fu, G. Exploring the relationships among reliability, resilience, and vulnerability of

water supply using many-objective analysis. J. Water Resour. Plan. Manag. 2017, 143. [

CrossRef

]

50.

UN-HABITAT. Meeting Development Goals in Small Urban Centres: Water and Sanitation in the World’s Citites;
Earthscan: Nairobi, Kenya, 2006; ISBN 9781844073054.

51.

Talavera, D.L.; Nofuentes, G.; Aguilera, J.; Fuentes, M. Tables for the estimation of the internal rate of return
of photovoltaic grid-connected systems. Renew. Sustain. Energy Rev. 2007, 11, 447–466. [

CrossRef

]

52.

Guerrero, T.A.; Furlong, K.; Arias, J. Complicating neoliberalization and decentralization: The non-linear
experience of Colombian water supply, 1909–2012. Int. J. Water Resour. Dev. 2016, 32, 172–188. [

CrossRef

]

53.

Gregory, R.; Failing, L.; Harstone, M.; Long, G.; McDaniels, D.; Ohlson, D. Structured Decision Making: A

Practical Guide to Environmental Management Choices; Wiley-Blackwell: New York, NY, USA, 2012.

54.

Marttunen, M.; Lienert, J.; Belton, V. Structuring problems for Multi-Criteria Decision Analysis in Practice: A
Literature Review of Method Combinations. Eur. J. Oper. Res. 2017, 263, 1–17. [

CrossRef

]

55.

Saaty, T.L. The analytic hierarchy and analytic network processes for the measurement of intangible criteria
and for decision-making. In Multicriteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S.,
Ehrgott, M., Eds.; Springer Science

+ Business Media, Inc.: Boston, MA, USA, 2005; pp. 363–419. ISBN

978-0-387-23081-8.

56.

Saaty, R.W. The analytic hierarchy process-what it is and how it is used. Math. Model. 1987, 9, 161–176.
[

CrossRef

]

57.

Saldarriaga, J. SOS: Agua para Santa Marta. Contacto 2015, 10, 5–12.

58.

Saldarriaga, J.; Siabatto, L.; Cotes, L.; Duque, N.; Cifuentes, G.; Madrid, N. Resultados de los Estudios
de Abastecimiento de Agua para Santa Marta; Financiera de Desarrollo Territorial S.A. FINDETER: Bogotá,
Colombia, 2015.

/var/www/pavco.com.co/public/site/pdftohtml/8c3ae34b3211f5a21f366bf390e84e22/index-html.html
background image

Water 2019, 11, 805

23 of 23

59.

Giurco, D.P.; Turner, A.; Fane, S.; White, S.B. Desalination for Urban Water: Changing Perceptions and Future
Scenarios in Australia. Chem. Eng. Trans. 2014, 42, 13–18.

60.

Giacomoni, M.H.; Berglund, E.Z. Complex Adaptive Modeling Framework for Evaluating Adaptive Demand
Management for Urban Water Resources Sustainability. J. Water Resour. Plan. Manag. 2015, 141, 04015024.
[

CrossRef

]

61.

Xiao, Y.; Fang, L.; Hipel, K.W.; Wre, H.D.; Asce, F. Agent-Based Modeling Approach to Investigating the
Impact of Water Demand Management. J. Water Resour. Plan. Manag. 2018, 144, 1–12. [

CrossRef

]

62.

Fielding, K.S.; Spinks, A.; Russell, S.; McCrea, R.; Stewart, R.; Gardner, J. An experimental test of voluntary
strategies to promote urban water demand management. J. Environ. Manag. 2013, 114, 343–351. [

CrossRef

]

63.

Beal, C.D.; Gurung, T.R.; Stewart, R.A. Demand-side management for supply-side efficiency: Modeling tailored
strategies for reducing peak residential water demand. Sustain. Prod. Consum. 2016, 6, 1–11. [

CrossRef

]

64.

Cooley, H.; Phurisamban, R. The Cost of Alternative Water Supply and E

fficiency Options in California; Pacific

Institute: Oakland, CA, USA, 2016.

65.

Environment Agency (EA). Water Neutrality: An Economic Assessment for the Thames Gateway Development;
Environment Agency: Bristol, UK, 2009.

66.

Ho, W.; Ma, X. The state-of-the-art integrations and applications of the analytic hierarchy process. Eur. J.

Oper. Res. 2018, 267, 399–414. [

CrossRef

]

67.

Maleki, H.; Zahir, S. A Comprehensive Literature Review of the Rank Reversal Phenomenon in the Analytical
Hierarchy Process. J. Multi-Criteria Decis. Anal. 2013, 20, 141–155. [

CrossRef

]

68.

Wang, Y.M.; Luo, Y. On rank reversal in decision analysis. Math. Comput. Model. 2009, 49, 1221–1229.
[

CrossRef

]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:

//creativecommons.org/licenses/by/4.0/).

¿Quiere saber más? Contáctenos

Declaro haber leído y aceptado la Política de Privacidad
contactenos