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a b s t r a c t 

Sediment transport in sewers has been extensively studied in the past. This paper aims to propose a new 

method for predicting the self-cleansing velocity required to avoid permanent deposition of material in 

sewer pipes. The new Random Forest (RF) based model was implemented using experimental data col- 

lected from the literature. The accuracy of the developed model was evaluated and compared with ten 

promising literature models using multiple observed datasets. The results obtained demonstrate that the 

RF model is able to make predictions with high accuracy for the whole dataset used. These predictions 

clearly outperform predictions made by other models, especially for the case of non-deposition with de- 

posited bed criterion that is used for designing large sewer pipes. The volumetric sediment concentration 

was identified as the most important parameter for predicting self-cleansing velocity. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Designing sediment-carrying sewer systems is a well-known 

eld of research in hydraulic engineering. This interest is explained 

y the problems related to the presence of material in the systems. 

ue to the varying environmental conditions (i.e. loading and sedi- 

ent characteristics and intermittent flow), the risk of building up 

 permanent sediment deposit increases during dry weather sea- 

ons. These deposits lead to problems such as reduced pipe capac- 

ty, increased roughness, and premature overflows. As an example, 

ckers et al. (2001) showed that the presence of a permanent de- 

osit at the bottom of sewer pipes increases hydraulic roughness 

nd reduces discharge capacity by about 20%. 

The most common criterion to avoid permanent deposit of ma- 

erial in sewer pipes is known as non-deposition. Several authors 

 Safari et al., 2018 ; Vongvisessomjai et al., 2010 ) have classified this

riterion into two subgroups: 1) Non-deposition without deposited 

ed and 2) Non-deposition with deposited bed. Both groups are 

ased on the presence of sediments at the bottom of the pipe. In 

he first case, high water velocities produce an individual and sep- 

rate movement of the particles by slicing or rolling over the pipe 

nvert, i.e. without deposited bed. In contrast, the second case is 

een when lower water velocities are presented and the particles 

re grouped and move as a transitional deposited bed. 
∗ Corresponding author at: Cra 1 Este No. 19A – 40 Bogota, Colombia. 
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In the case of ‘without deposited bed’, traditional criteria of 

inimum velocities and shear stress values are commonly found 

n water utilities standards and industry design codes. Generally, 

hese standards and codes suggest values ranging from 0.30 m 

 

−1 to 1.0 m s −1 for minimum velocity and from 1.0 Pa to 4.0 Pa

or shear stress ( Montes et al., 2019 ; Nalluri and Ab Ghani, 1996 ;

ongvisessomjai et al., 2010 ). Several authors ( Merritt and Enfin- 

er, 2019 ; Nalluri and Ab Ghani, 1996 ) have shown how tradi- 

ional threshold values lead to over-design of small diameter pipes 

nd under-design of large diameter pipes (as a rule-of-thumb, 

ipes with diameter greater than 500 mm). Consequently, large 

ewers commonly require frequent removal of sediment deposits 

 Ackers et al., 2001 ) because of the minimum self-cleansing value 

dopted during the design stage. A unique design value is inad- 

quate; hence sediment characteristics and hydraulic conditions 

ust be included in the definition of the self-cleansing design cri- 

erion. 

According to Safari and Aksoy (2020) , existing traditional self- 

leansing criteria can be up to 20% different from laboratory- 

cale measured values. The channel cross-section is relevant in 

he choice of the self-cleansing criterion. For example, rectangu- 

ar cross-sections require lower velocities compared to V-bottom 

r U-shape channels. Even criteria based on the Shields diagram, 

uch as the Camp criterion, seem to be inadequate to define the 

elf-cleansing value due to the non-inclusion of sediment concen- 

ration. 

The above has motivated extensive experimental research 

 Ab Ghani, 1993 ; El-Zaemey, 1991 ; May, 1993 ; May et al., 1989 ;
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ayerle, 1988 ; Montes et al., 2020a , 2020b ; Ota, 1999 ; Perrusquía, 

991 ; Vongvisessomjai et al., 2010 ) aiming to collect data and 

eveloping models for predicting the self-cleansing velocity as a 

unction of sediment characteristics and sewer hydraulics, based 

n the concept of non-deposition. These studies have been car- 

ied out at laboratory scale under well-controlled and steady flow 

onditions, using non-cohesive sediments. Different authors col- 

ected data in pipes with different materials (e.g. concrete, acrylic 

r PVC, among other materials) and internal diameters, ranging 

rom 100 mm to 595 mm. In the end, all these studies proposed a 

odel for predicting the self-cleansing conditions in practice that 

as either developed with their own experimental data or using 

he benchmark data reported in the literature. Most models devel- 

ped are regression-based and include the group of input param- 

ters that most affect the prediction of the self-cleansing veloc- 

ty ( Ackers et al., 2001 ; Ebtehaj and Bonakdari, 2016a ; May et al.,

996 ). Most of these models are in the form of: 

V l √ 

gd ( S s − 1 ) 
= aC b v 

(
d 

R 

or 
d 

D 

)c 

λe D 

f 
gr 

(
W b 

Y 
or 

y s 

Y 
or 

y s 

D 

)g (P 

B 

)h 

(1) 

here V l is the self-cleansing velocity, d the mean particle diam- 

ter, g the gravity acceleration coefficient, S s the specific gravity 

f sediments, C v the volumetric sediment concentration, R the hy- 

raulic radius, D the pipe diameter, λ the channel friction fac- 

or, D gr the dimensionless grain size ( = ( ( S s −1) g d 3 

ν2 ) 
1 
3 
) , ν the wa- 

er kinematic viscosity, W b the sediment deposited width, P the 

etted perimeter, y s the sediment deposited thickness, B the wa- 

er surface width, Y the water level and a , b, c, e , f , g and h re-

ression coefficients. Other parameters as V t the threshold veloc- 

ty required to initiate movement ( = 0 . 125 ( gd( S s − 1 ) ) 0 . 5 ( Y/d ) 0 . 47 ) 

nd S o the pipe slope have also been included in regression models 

 May et al., 1996 ; Montes et al., 2020a ). 

Most of above studies for both non-deposition criteria, have de- 

eloped predictive models which tend to be overfitted to their own 

xperimental data. This problem can be seen especially in the ear- 

ier works, where no advanced techniques were used to develop 

egression models. For example, several authors ( Montes et al., 

020b ; Safari et al., 2018 ) have pointed out that early work of

ayerle’s (1988) has developed a model that shows high accu- 

acy prediction with its data and poor prediction when other 

atasets are used. In contrast, recent regression-models, which 

sed novel techniques such as Evolutionary Polynomial Regression 

Multi-Objective Genetic Algorithm (EPR-MOGA) and Least Abso- 

ute Shrinkage and Selection Operator (LASSO) have demonstrated 

etter prediction results ( Montes et al., 2020a , 2020b ). 

In order to address the above overfitting issue in regres- 

ion models, new Machine Learning (ML) and Artificial Intelli- 

ence (AI) techniques have been introduced for predicting the self- 

leansing velocity based on the concept of non-deposition sed- 

ment transport. Examples of models developed for the ‘with- 

ut deposited bed’ case include using techniques such as Artifi- 

ial Neural Network (ANN) ( Ebtehaj and Bonakdari, 2013 ), Sup- 

ort Vector Regression (SVR) coupled with the Firefly Algorithm 

 Ebtehaj and Bonakdari, 2016b ), the Group Method of Data Han- 

ling (GMDH) ( Ebtehaj and Bonakdari, 2016a ), neuro-fuzzy in- 

erence system combined with the Particle Swarm Optimisation 

ANFIS-PSO) ( Ebtehaj et al., 2019 ), Decision Trees (DT), Generalised 

egression Neural Network (GRNN), Multivariate Adaptive Regres- 

ion Splines (MARS) ( Safari, 2019 ) and Extreme Learning Machine 

ELM) ( Ebtehaj et al., 2020 ). For the other case of ‘non-deposition 

ith deposited bed’, fewer ML/AI type models have been devel- 

ped. Examples include models based on Particle Swarm Optimisa- 

ion (PSO) algorithm ( Safari et al., 2017 ), Gene Expression Program- 

ing (GEP) ( Roushangar and Ghasempour, 2017 ) and Multigene 

enetic Programming (MGP) ( Safari and Danandeh Mehr, 2018 ). 
2 
The above models, developed using different ML/AI tech- 

iques (for both non-deposition criteria), have improved the 

rediction accuracy of self-cleansing velocities and addressed 

he issues of model overfitting but only partially. As noted by 

endehboudi et al. (2018) , these models still tend to have rather 

imited extrapolation capabilities meaning that once they are ap- 

lied to datasets that were not used for their training they tend 

o underperform. Also, the ML/AI based models developed so far 

re largely black-box type models (e.g. ANN) meaning that, un- 

ike white-box type regression models, they suffer from low inter- 

retability of physical significance of model inputs (i.e. explanatory 

actors), and interactions with the model output. 

The aim of this paper is to overcome above deficiencies us- 

ng the Random Forest (RF) technique for predicting self-cleansing 

ewer velocities. RF ( Breiman, 2001 ) is a flexible and interpretable 

upervised ML technique that combines the results (outputs) of 

ultiple individual decision trees to make a prediction of interest. 

ue to its good characteristics and easy application, it has been 

 widely used for addressing many other problems in water en- 

ineering. Tyralis et al. (2019) showed a full review of studies in 

hich RF was successfully applied to water resources problems. 

Using the RF technique, a new predictive self-cleansing model 

s developed and presented here for both non-deposition criteria 

with and without deposited bed). This model aims to increase 

rediction accuracy whilst avoiding overfitting issues and enabling 

nterpretability of results obtained. The new modelling technique 

s compared to ten literature models using multiple datasets. 

. Data 

.1. Non-deposition without deposited bed data 

Several experimental data were collected from the literature to 

mplement the RF method. Mayerle (1988) studied the sediment 

ransport in a 152 mm diameter pipe and in two rectangular chan- 

els of 311.5 mm and 462.3 mm bottom width ( W ) using granular 

ands ranging from 0.50 mm to 8.74 mm. Ab Ghani (1993) col- 

ected 221 data in 154 mm, 305 mm and 450 mm diameter pipes, 

esting sands between 0.46 mm and 8.40 mm. Ota (1999) used 

 225 mm concrete pipe with a constant slope of 0.002, vary- 

ng the volumetric sediment concentration between 4.2 ppm to 

9.4 ppm. Vongvisessomjai et al. (2010) used two circular PVC 

ipes of 100 mm and 150 mm diameter to study the bedload 

nd suspended load transport. Montes et al. (2020a) collected ex- 

erimental data in a 242 mm acrylic pipe using granular mate- 

ial with a mean particle diameter of 0.35 mm and 1.51 mm. 

ontes et al. (2020b) carried out 107 experiments in a 595 mm 

VC pipe, using sediments ranging from 0.35 mm to 2.6 mm. 

.2. Non-deposition with deposited bed data 

For the non-deposition with deposited bed, El-Zaemey 

1991) studied the sediment transport in a 305 mm diameter 

ipe, using granular particles ranging from 0.53 mm to 8.40 mm. 

errusquía (1991) carried out experiments in a 225 mm diame- 

er pipe, varying the sediment concentration from 18.7 ppm to 

08.0 ppm. Ab Ghani (1993) collected the deposited bed data only 

n the 450 mm concrete pipe and using granular sand with a mean 

article diameter of 0.72 mm. May (1993) extended their previous 

tudy ( May et al., 1989 ) and collected experimental data with 

ediment thickness varying from 57.6 mm to 129.6 mm. Finally, 

ontes et al. (2020b) carried out experiments in a 595 mm PVC 

ipe, considering a relative sediment thickness ( y s /D ) between 

.13% and 1.11%. Table 1 outlines the characteristics of the data 

sed for developing the RF algorithm. 
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3 
As shown in Table 1 , a total of 664 and 454 data are available

or the development of models without deposited bed and with 

eposited bed, respectively. 

. Mehodology 

.1. Random forest model 

Random Forest model developed here predicts the par- 

icle Froude number ( F r 
∗) as a function of several well- 

nown dimensionless explanatory factors ( Kargar et al., 2019 ; 

ongvisessomjai et al., 2010 ): 

 r 
∗ = 

V l √ 

gd ( S s − 1 ) 
= f 

(
C v , D gr , 

d 

R 

, λ, 
y s 

D 

)
(2) 

Random forest (RF) is a bagging algorithm for regression and 

lassification problems proposed by Breiman (2001) . This is a low- 

ariance method, which randomly split the training data and the 

nput variables predictors to build a set of b decision trees ( B t ). 

he results of all decision trees generated from bootstrapped train- 

ng samples ( T b ( x ;�b ) ) are then averaged, i.e. the final result ( ̂  y (x ) )

s the average of the output of all decision trees (as shown in 

q. (3) ). This procedure ensures the reduction of the model vari- 

nce and consequently the reduction of the risk of overfitting. A 

implified conceptual diagram of the RF method is shown in Fig. 1 . 

ˆ 
 ( x ) = 

1 

B t 

B t ∑ 

b=1 

T ( x ;�b ) (3) 

In this paper, the R package ‘RandomForest’ ( Liaw and 

iener, 2002 ) was used for constructing both non-deposition, 

ithout deposited bed and deposited bed, self-cleansing models. 

he number of predictors considered at each split ( mtry ) and the 

umber of trees in the forest ( B t ) are the parameters that define 

he structure of the RF regression model. The mtry parameter is 

stimated by using the rfcv() function, which shows the cross- 

alidation performance for each number of predictors. In addition, 

he optimal number of trees is defined as the value that minimises 

he Mean Square Error (MSE) value of the training data. These pa- 

ameters are estimated and the results are shown in Fig. 2 . Accord- 

ng to this figure, the optimal number of features (i.e. the random 

redictors used in each tree) are three and four non-dimensional 

arameters for the cases of without deposited bed and with de- 

osited bed, respectively. Similarly, the optimal number of trees is 

71 for without deposited bed and 229 for with deposited bed. 

Cross-validation is carried out during the training stage using 

ut-of-bag (OOB) samples. As mentioned above, the method ran- 

omly bootstraps the training sample, that is, some of the train- 

ng data are left out to build each decision tree. Only two out of 

hree parts of the total training data are used to build the tree 

 Breiman, 2001 ). Based on this, data not included in the boot- 

trapped sample (OOB data) are predicted, and the prediction error 

s averaged over the trees that do not include these data (OOB Er- 

or). 

.1.1. Splitting of training and testing data 

The whole benchmarking data collected from the literature are 

sed for both training and testing stages of the RF model. Usually, 

5% of the data is used during the training stage of the model and 

he other 25% to validate the results. According to Safari (2020) , 

he range of variation in the training data has direct implications 

or model performance (i.e. accuracy). As a result, the model can 

how overfitting issues and poor extrapolation capabilities when 

arrow datasets are used in the training stage (i.e. data with a low 

ange of variation). 
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Fig. 1. Simplified conceptual diagram of the RF method. 

Fig. 2. Selection of the optimal Random forest parameters. 

Fig. 3. Variation of the training and testing error using different combination of percentages between the training and testing dataset. A) Training stage and B) Testing stage. 
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Checking the non-overfitting of the RF model is carried out by 

sing several sizes in the training and testing data (i.e. changing 

he percentage of data used as training and testing) and by ver- 

fying the error, defined by the Coefficient of Determination ( R 2 ) 

as shown in Eq. (14) ). For this, ten different combinations of per- 

entages are defined (i.e. % of the training data : % of the test- 

ng data = [5:95, 15:85, 25:75, 35:65, 45:55, 55:45, 65:35, 75:25, 

5:15, 95:5]), randomly changing the ranges of the training and 

esting data, and developing 100 RF models for each combination. 

s a result, 10 0 0 RF models are trained and the error is estimated

or both training and testing stage. Using this information, several 

oxplots are constructed showing the R 2 variation for each stage. 

ig. 3 shows how the model error decreases as the training sam- 

le size increases. For example, when only 5% of the whole dataset 

s used for training the model and the remaining 95% for testing 

t, the error varies between 0.84 and 0.96, for the training stage, 
4 
nd between 0.39 and 0.73 for the testing stage. This clearly shows 

hat the model is under-trained; however, when the ratio is greater 

han 50:50 the error tends to be constant and slightly variable for 

oth stages. Ratios greater than 90:10 tend to generate unsatis- 

actory results for the testing stage, i.e. the model is over-trained 

nd shows high variation in the error, i.e. overfitting, (as shown in 

ig. 3 b). Based on this, a combination of 75:25 is taken as optimal 

or implementing the model. 

The variation of the data used for training and testing dataset 

s presented in Table 2 . 

Using the above considerations, the RF model is implemented 

ith the optimal parameters defined in Fig. 2 and using the ranges 

f variation of the training data outlined in Table 2 . The full data

ollected from the literature are shown in the Supplementary ma- 

erial. Table S1 and Table S2 show the data for non-deposition 

ithout and with deposited bed, respectively, and the correspond- 
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Table 2 

Variation of the data for training and testing the RF model. 

Non-deposition 

criterion Stage No. of runs 

Channel geometry 

(mm) Flow Velocity (m/s) Pipe slope (%) 

Sediment 

Concentration 

(ppm) 

Sediment 

thickness bed 

(mm) 

Without deposited bed 
Training 498 D = 100.0 – 595.0 

W = 311.5 – 462.3 

0.237 - 1.41 0.04 – 3.43 0.53 – 19,957 –

Testing 166 D = 100.0 – 595.0 

W = 311.5 – 462.3 

0.237 – 1.24 0.04 – 2.74 1.00 – 13,840 –

With deposited bed 
Training 340 D = 225 – 595 0.294 – 1.53 0.05 – 5.42 3.50 - 10,274 0.78 – 129.6 

Testing 114 D = 225 – 595 0.319 – 1.28 0.05 – 2.58 17.00 - 9101 1.78 – 120.0 

Fig. 4. Random Forest code to calculate the particle Froude number in sewer pipes. 
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ng RF particle Froude number predictions. The implemented code 

or the RF method is shown in Fig. 4 . An example of one of the 471

ecision trees generated by the RF model, for the non-deposition 

ithout deposited bed, is shown in Figure S1, in the Supplemen- 

ary material. 

.1.2. Measure of feature importance 

Note that in this paper, a decrease in model accuracy when the 

 th variable is permuted (i.e. the percentage of the increase in the 

SE, % IncMSE) is considered as a measure of the importance of a 

odel input variable. This index shows the strength of each ex- 

lanatory variable based on the reduction of the MSE. The step- 

y-step to calculate the % IncMSE is shown as follows ( Hastie et al., 

009 ): 

(1) Calculate the MSE of the OOB-sample data in each tree of 

the forest ( MS E b ). 

(2) Randomly permute the value of the j th explanatory variable 

and calculate the MSE ( MS E j ). 

(3) Finally, calculate % IncMSE for each explanatory variable as: 

% IncM SE = 100 · M S E j − M S E b 
M S E b 

(4) 

As a result, the more the % IncMSE increases for a variable, the 

ore important it is. 
5 
.2. Performance assessment 

.2.1. Models used for comparing the RF results 

In order to evaluate the RF model performance, it is com- 

ared to several literature models. The models selected for com- 

arison are the replicable white-box models with high predic- 

ion accuracy reported in the literature and two black-box mod- 

ls where the implementing code is provided in the original pa- 

ers. Other black-box models cannot be evaluated due to the lim- 

ted replicability shown by these models (e.g. ANN). Based on this, 

n the case of non-deposition without deposited bed, seven mod- 

ls selected are the EPR-MOGA model ( Montes et al., 2020a ), the 

EP model ( Kargar et al., 2019 ), the MARS model ( Safari, 2019 ),

he May et al. (1996) model, the Safari and Aksoy (2020) model, 

he ANFIS-PSO model ( Ebtehaj et al., 2019 ) and the ELM model 

 Ebtehaj et al., 2020 ). In the case of non-deposition with de- 

osited bed, three models used for comparison are the PSO model 

 Safari and Shirzad, 2019 ), the LASSO model ( Montes et al., 2020b )

nd the MGP model ( Safari and Danandeh Mehr, 2018 ). The EPR- 

OGA, LASSO, May et al. (1996) and Safari and Aksoy (2020) are 

he regression type models whilst GEP, MARS, ANFIS-PSO, ELM, 

SO and MGP models make use of ML/AI techniques. 

The equations used by above ten models are as follows: 

EPR-MOGA: 

V l √ 

gd ( S s − 1 ) 
= 5 . 6 C 0 . 16 

v 

(
d 

R 

)−0 . 58 

S 0 . 14 
o D 

0 . 02 
gr (5) 

GEP: 

V l √ 

gd ( S s − 1 ) 
= 

3 . 05 C 0 . 16 
v 

atan 

(
atan 

(√ 

d 
R 

)) + atan ( 3 . 41 − ln ( D gr ) ) 

+ atan 

⎛ 

⎝ tan 

( (
8 . 37 − 7 . 99 λ + 

d 

R 

λ

)2 
) 2 

⎞ 

⎠ 

+ ln 

⎛ 

⎝ 

( (
d 

R 

)3 
) 2 λ

⎞ 

⎠ (6) 

MARS: 

V l √ 

gd ( S s − 1 ) 

= 7 . 26 − 1 . 75 · max ( 0 , d/R − 0 . 12 ) + 2 · max ( 0 , 0 . 12 − d/R ) 

+15 . 89 · max ( 0 , C v − 0 . 44 ) − 16 . 42 · max ( 0 , 0 . 44 − C v ) 

+0 . 47 · max ( 0 , D gr − 0 . 29 ) − 7 . 25 · max ( 0 , λ − 0 . 3 ) 

−16 . 03 · max ( 0 , C v − 0 . 01 ) + 3 . 7 · max ( 0 , D gr − 0 . 12 ) 

−4 . 33 · max ( 0 , D gr − 0 . 08 ) + 0 . 43 · max ( 0 , λ − 0 . 59 ) 

+6 . 75 · max ( 0 , λ − 0 . 28 ) + 1 . 67 · max ( 0 , d/R − 0 . 07 ) (7) 
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May et al. (1996) : 

 v = 0 . 0303 

(
D 

2 

A 

)(
d 

D 

)0 . 6 (
1 − V t 

V l 

)4 
(

V l 
2 

gD ( S s − 1 ) 

)1 . 5 

(8) 

Safari and Aksoy (2020) : 

V l √ 

gd ( S s − 1 ) 
= 4 . 83 C 0 . 09 

v 

(
d 

R 

)−0 . 32 

D 

−0 . 14 
gr 

(
P 

B 

)0 . 20 

(9) 

ANFIS-PSO: 

No equation. The Matlab code can be found in 

btehaj et al. (2019) . 

ELM: 

V l √ 

gd ( S s − 1 ) 
= 

[
1 

( 1 + exp ( −InW · InV + BHI ) ) 

]T 

· OutW (10) 

here InW and OutW are the input and output weights, BHI the 

ias of the hidden neurons and InV the input variables (i.e. C v , d/R ,

 

2 /A , R/D , D gr , d/D and λ). Full details of the values chosen for

ach parameter are shown in Ebtehaj et al. (2020) . 

PSO: 

V l √ 

gd ( S s − 1 ) 
= 3 . 66 C 0 . 16 

v 

(
d 

R 

)−0 . 40 (
y s 

Y 

)−0 . 10 

(11) 

LASSO: 

V l √ 

gd ( S s − 1 ) 
= 5 . 83 C 0 . 144 

v 

(
d 

R 

)−0 . 305 

λ−0 . 059 D 

−0 . 169 
gr 

(
y s 

D 

)−0 . 104 

(12) 

MGP: 

V l √ 

gd ( S s − 1 ) 
= 1 . 96 − 0 . 61 λ − 0 . 51 C v + 1 . 18 D 

0 . 50 
gr λ1 . 50 

+ 0 . 61 

(
2 C v + 

d 

R 

)0 . 50 

− 2 . 45 

(
d 

R 

)1 / 8 

(13) 

.2.2. Performance indices 

The RF model performance is evaluated and compared to above 

en models using three performance indicators. These are the Co- 

fficient of Determination ( R 2 ), the Root Mean Square Error ( RMSE )

nd the Mean Absolute Percentage Error ( MAPE ), defined as fol- 

ows: 

 

2 = 1 −
∑ n 

i =1 

(
F ∗r OBS 

− F r MOD 

)2 

∑ n 
i =1 

(
F ∗r OBS 

− F ∗r OBS 

)2 
(14) 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

(
F ∗r OBS 

− F r MOD 

)2 
(15) 

AP E = 

100 

n 

n ∑ 

i =1 

∣∣∣∣F ∗r OBS 
− F r MOD 

F ∗r OBS 

∣∣∣∣ (16) 

here F ∗r OBS 
is the particle Froude number observed data, F r MOD 

the 

article Froude number estimated by RF algorithm (or other pre- 

ictive model), n the number of data and F ∗r OBS 
the mean of ob- 

erved particle Froude number data. 

The Coefficient of Determination measures the percentage of 

he model variance that can be explained. This coefficient varies 

etween 0 and 1, with a value of 1 denoting a perfect match be-

ween observed and modelled data. The Root Mean Square Error 

easures the standard deviation of the residuals. Note that a value 

lose to 0 indicates high model prediction accuracy. Finally, the 
6 
ean Absolute Percentage Error assesses the model prediction ac- 

uracy (i.e. bias) as a percentage of the observed value. Value of 

 indicates the perfect model where there are no differences be- 

ween predictions and observations. 

. Results 

The results obtained by using the methodology shown in the 

revious section are presented in Tables 3 and 4 , for without de- 

osited bed and deposited bed criteria, respectively. Graphically, 

hese results are shown in Figs. 5 and 6 . As shown in these tables,

or the MARS, ANFIS-PSO, ELM and MGP models, the outliers of the 

article Froude number (i.e. F r 
∗

< 0.00 and F r 
∗

> 20.00) were re- 

oved. This is because these models can produce extreme values 

e.g. F r 
∗ = −58.67 or F r 

∗ = 163.59, among others) that misrepresent 

he model comparison when evaluating the performance indices. 

As it can be seen from Table 3 , Random Forest model shows 

 better generalisation capacity than other models shown, as 

emonstrated in high prediction accuracy observed for all avail- 

ble datasets (0.88 > R 2 > 0.98, 0.24 > RMSE > 0.73 and 4.36% > 

AP E > 11.09%). The following observations can be made from the 

erformance of the other models evaluated: 

• EPR-MOGA, similarly to RF, shows good results but has infe- 

rior accuracy in large sewer pipes ( R 2 = 0.86, RMSE = 1.03 and 

MAP E = 11.31%). In addition, EPR-MOGA model shows limita- 

tions for predicting the particle Froude number in non-circular 

sections (as shown in the Mayerle (1988) rectangular data). 

This equation shows good extrapolation capabilities because of 

the inclusion of the pipe slope as input feature for the self- 

cleansing prediction. 
• GEP shows acceptable results (0.79 > R 2 > 0.87, 0.66 > RMSE

> 0.89 and 11.45% > MAP E > 22.33%) for the datasets used 

for its development in circular channels ( Ab Ghani, 1993 ; 

Mayerle, 1988 ; Vongvisessomjai et al., 2010 ) and poor perfor- 

mance for other datasets (0.00 > R 2 > 0.76, 1.00 > RMSE > 

1.95 and 14.35% > MAP E > 37.92%). This model presents good 

performance for large sewer pipes. In contrast, for non-circular 

channels the model quickly loss accuracy. 
• According to Safari (2019) , MARS model was developed by us- 

ing the experimental data collected by Mayerle (1988) (in 

both circular and rectangular channels), May (1993) , 

Ab Ghani (1993) and Vongvisessomjai et al. (2010) . As a 

result, this model shows acceptable performance for these 

datasets (0.49 > R 2 > 0.87, 0.81 > RMSE > 1.15 and 13.63% 

> MAP E > 28.08%) but poor performance for the remaining 

datasets ( R 2 = 0.00, 1.48 > RMSE > 2.88 and 29.14% > MAP E

> 51.28%). Based on the above, and compared to the RF model, 

limited extrapolation capabilities are identified for the MARS 

model. 
• May et al. (1996) is the best regression-based equation re- 

ported in the literature ( Ackers et al., 2001 ; Ebtehaj et al., 

2014 ), as it was developed using several experimental datasets. 

This is the equation proposed by the Construction Industry Re- 

search and Information Association (CIRIA) for designing self- 

cleansing sewer pipes transporting coarser granular material as 

bedload ( Ackers et al., 2001 ). This model shows good perfor- 

mance for pipe diameters less than 500 mm (0.83 > R 2 > 0.99, 

0.13 > RMSE > 0.82 and 2.38% > MAP E > 11.61%). In con- 

trast, limited extrapolation for large sewer pipes is identified 

as the low performance indices values obtained ( R 2 = 0.00, 

RMSE = 4.88 and MAP E = 48.97%). This equation shows better 

performance than the RF model when compared to data from 

Vongvisessomjai et al. (2010) , but lower accuracy when applied 

to the rest of the datasets. 
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Table 3 

Accuracy of self-cleansing models for without deposited bed criterion using performance indices for training and testing dataset. Bolded values show best performance 

model. 

Dataset Performance Index 

Model 

RF EPR-MOGA GEP MARS May et al. (1996) a Safari and Aksoy (2020) ANFIS-PSO ELM 

Training R 2 0.98 0.90 0.75 0.00 0.27 0.74 0.51 ∗ 0.30 ∗

RMSE 0.33 0.76 1.22 2.55 2.17 1.25 1.69 ∗ 1.95 ∗

MAPE (%) 4.88 11.54 23.52 34.16 17.49 17.21 19.32 ∗ 29.76 ∗

Testing R 2 0.91 0.86 0.69 0.00 0.09 0.74 0.40 ∗ 0.32 ∗

RMSE 0.73 0.88 1.33 2.55 2.27 1.21 1.84 ∗ 1.92 ∗

MAPE (%) 11.09 12.35 26.43 36.57 19.15 17.24 20.95 ∗ 29.82 ∗

Mayerle (1988) circular R 2 0.96 0.89 0.87 0.87 0.87 0.75 0.80 ∗ 0.42 

RMSE 0.45 0.75 0.81 0.81 0.82 1.12 1.00 ∗ 1.71 

MAPE (%) 5.62 8.90 14.77 14.03 11.49 14.91 17.92 ∗ 26.75 

Mayerle (1988) rectangular R 2 0.93 0.38 0.30 0.81 – 0.87 0.00 0.47 

RMSE 0.49 1.44 1.54 0.81 – 0.66 2.74 1.33 

MAPE (%) 8.49 28.97 33.00 15.51 – 13.14 45.28 20.75 

Ab Ghani (1993) R 2 0.97 0.96 0.83 0.72 0.90 0.81 0.88 0.38 

RMSE 0.36 0.43 0.89 1.15 0.67 0.94 0.74 1.69 

MAPE (%) 5.94 9.35 22.33 28.08 10.32 15.60 10.34 23.96 

Ota (1999) R 2 0.97 0.98 0.44 0.00 0.96 0.97 0.97 0.55 

RMSE 0.24 0.20 1.00 1.48 0.27 0.25 0.22 0.90 

MAPE (%) 5.55 6.90 37.92 51.28 7.78 7.90 6.46 19.54 

Vongvisessomjai et al. (2010) R 2 0.88 0.95 0.79 0.49 0.99 0.71 0.97 0.00 

RMSE 0.49 0.33 0.66 1.03 0.13 0.78 0.24 1.59 

MAPE (%) 6.56 5.78 11.45 13.63 2.38 13.34 3.62 28.50 

Montes et al. (2020a) R 2 0.96 0.98 0.00 0.00 0.83 0.67 0.77 ∗ 0.00 

RMSE 0.31 0.25 1.64 2.37 0.67 0.94 0.75 ∗ 1.85 

MAPE (%) 4.36 4.94 28.15 49.73 11.61 15.39 12.39 ∗ 33.96 

Montes et al. (2020b) R 2 0.94 0.86 0.76 0.00 ∗ 0.00 0.34 0.00 ∗ 0.00 ∗

RMSE 0.70 1.03 1.37 2.88 ∗ 4.88 2.26 3.01 ∗ 3.10 ∗

MAPE (%) 7.33 11.31 14.35 29.14 ∗ 48.97 23.44 30.56 ∗ 39.30 ∗

a Model not valid for non-circular channels. 
∗ Outliers removed. 

Table 4 

Accuracy of self-cleansing models for deposited bed criterion using performance in- 

dices for training and testing dataset. Bolded values show best performance model. 

Dataset 

Performance 

Index 

Model 

RF PSO LASSO MGP 

Training R 2 0.98 0.75 0.82 0.51 ∗

RMSE 0.32 1.30 1.13 1.69 ∗

MAPE (%) 4.70 14.36 13.07 28.78 ∗

Testing R 2 0.91 0.70 0.83 0.29 ∗

RMSE 0.80 1.47 1.10 2.19 ∗

MAPE (%) 12.10 15.94 12.59 31.36 ∗

El-Zaemey (1991) R 2 0.94 0.78 0.83 0.54 

RMSE 0.38 0.76 0.66 1.08 

MAPE (%) 6.49 14.28 11.97 30.19 

Perrusquía (1991) R 2 0.84 0.65 0.62 0.00 

RMSE 0.33 0.49 0.50 1.29 

MAPE (%) 7.07 10.15 12.05 30.58 

Ab Ghani (1993) R 2 0.91 0.56 0.74 0.51 

RMSE 0.60 1.32 1.01 1.40 

MAPE (%) 6.13 16.26 11.19 13.07 

May (1993) R 2 0.90 0.63 0.64 0.54 

RMSE 0.62 1.18 1.16 1.31 

MAPE (%) 6.50 13.47 14.26 14.21 

Montes et al. (2020a) R 2 0.93 0.00 0.73 0.00 ∗

RMSE 0.81 3.06 1.56 5.54 ∗

MAPE (%) 6.84 21.05 10.36 58.79 ∗

∗ Outliers removed. 
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• Safari and Aksoy (2020) model is a competitive equation for 

predicting the self-cleansing velocity in both circular and non- 

circular channels. This model shows similar but inferior per- 

formance to EPR-MOGA model in small sewer pipes (0.67 > 

R 2 > 0.97, 0.25 > RMSE > 1.12 and 7.90% > MAP E > 15.60%), 

but in large sewers the accuracy is quickly lost ( R 2 = 0.34, 

RMSE = 2.26 and MAP E = 23.46%). In contrast, this model 

outperforms the results, compared to other regression models 
7 
(EPR-MOGA, GEP and MARS) and ML/AI models (ANFIS-PSO and 

ELM), in non-circular channels ( R 2 = 0.87, RMSE = 0.66 and 

MAP E = 13.41%), which is a competitive performance compared 

to the RF model ( R 2 = 0.89, RMSE = 0.61 and MAP E = 10.05%).

This is because of the inclusion of the P/B relation as explana- 

tory variable for predicting the particle Froude number. This 

model is competitive and shows good generalisation of the 

problem for designing sewers under the non-deposition with- 

out deposited bed criterion. 
• According to Ebtehaj et al. (2019) , ANFIS-PSO model was 

developed by using the experimental data collected by 

Ab Ghani (1993) , Ota (1999) and Vongvisessomjai et al. (2010) . 

As a result, this model shows good performance for these 

datasets (0.88 > R 2 > 0.97, 0.22 > RMSE > 0.74 and 3.62% 

> MAP E > 10.34%). In large sewers and non-circular channels, 

the model losses accuracy ( R 2 = 0.00, 2.74 > RMSE > 3.01 and 

30.56% > MAP E > 45.28%). This model produces some extreme 

values when the particle Froude number is calculated, espe- 

cially in the Montes et al. (2020b) dataset. The RF model gen- 

erates better results compared to this model. 
• ELM was trained with the same dataset used for the ANFIS-PSO 

model. Not satisfactory results are obtained when this model is 

applied on the dataset considered in this study (0.00 > R 2 > 

0.55, 0.90 > RMSE > 3.1 and 19.54% > MAP E > 39.30%). Same 

comments, as mentioned above for the ANFIS-PSO model, can 

be shown here. 

According to the results shown in Table 4 (deposited bed crite- 

ion), RF model outperforms the other models for the entire con- 

idered dataset. This model shows good accuracy levels (0.84 > R 2 

 0.98, 0.32 > RMSE > 0.81 and 4.70% > MAP E > 12.10%) for all 

he range of variation of the hydraulics and sediment characteris- 

ics. Comments related to the other models studied are as follows: 
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Fig. 5. Performance of the models applied in the non-deposition without deposited bed testing dataset. 

8 
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Fig. 6. Performance of the models applied in the non-deposition with deposited bed testing dataset. . 
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Fig. 7. Variable importance estimated by RF model: A) without deposited bed; B) 

with deposited bed. 
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• PSO model was developed by using the experimental data col- 

lected by El-Zaemey (1991) , Perrusquía (1991) , May (1993) and 

Ab Ghani (1993) . As a result, this model shows good perfor- 

mance for these datasets (0.56 > R 2 > 0.78, 0.49 > RMSE > 

1.32 and 10.15% > MAP E > 16.26%). However, when the model 

is compared to the data collected in the large sewer pipe, 

the accuracy quickly decreases ( R 2 = 0.00, RMSE = 3.06 and 

MAP E = 21.05%). 
• LASSO model reports good accuracy levels for all the datasets 

considered (0.62 > R 2 > 0.83, 0.50 > RMSE > 1.56 and 10.36% 

> MAP E > 14.26%). However, the accuracy is still inferior com- 

pared to the RF model. This model shows good extrapolation 

capabilities and generalisation of the problem. 
• MGP was developed by using the same experimental datasets 

of the PSO model. This model shows less accuracy compared to 

the PSO model (0.00 > R 2 > 0.54, 1.08 > RMSE > 5.54 and 

13.07% > MAP E > 58.79%). In large sewer pipes, the model 

shows poor performance. In contrast to other models, the MGP 

was developed by using normalised values. Based on this, the 

range of variation used for training the model can potentially 

affect the final form/structure of the final expression shown by 

the MGP. 

RF accuracy shown in the Montes et al. (2020b) data is es- 

ecially important due to the relative sediment thickness ( y s /D ) 

sed at laboratory scale in that study. As Table 1 shows, the sedi- 

ent thickness used at laboratory scale ranging from 0.8 mm (for 

ontes et al. (2020b) data) to 129.6 mm (for May (1993) data), 

.e. the variation of y s /D is from 1.1% to 20.0% of the pipe diame-

er. Values of y s /D = 20% is an unrealistic consideration since the 

ptimal sediment thickness design has been defined as 1% of the 

ipe diameter ( May et al., 1989 ; Safari and Shirzad, 2019 ). Data

ollected by Montes et al. (2020b) seem to be the closer repre- 

entation of the real conditions found in sewer systems. Based on 
9 
his, RF is the model that best predicts the self-cleansing velocity 

or data close to real conditions. 

.1. Variable importance 

RF model input variable importance is presented in Fig. 7 . As 

hown in this figure, for both non-deposition criteria the most 

mportant variable is the volumetric sediment concentration, fol- 

owed by the dimensionless grain size and the relative grain size. 

his result is consistent with previous findings reported in the lit- 

rature ( Ackers et al., 2001 ; Ebtehaj et al., 2020 ). Less important

arameters for predicting the particle Froude number and thus the 

elf-cleansing velocity, are the relative sediment thickness and the 

hannel friction factor, for the deposited bed criterion. 

Parameter importance shown by EPR-MOGA, Safari and Ak- 

oy (2020) , PSO and LASSO is quite different. In these tech- 

iques, the most important parameter is the relative grain 
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ize due to the highest values of the regression coefficients 

 ( d R ) 
−c ; 0 . 305 < c < 0 . 58 ) , as shown in Eqs. (5) , (9) , (11) and (12) .

he parameter importance for the GEP, MARS and MGP model 

s less intuitive because of the form of the equations, as shown 

n Eqs. (6) , (7) and (13) , which include logarithmic and inverse 

angent functions for calculating the particle Froude number. Less 

omparable are the results shown by ANFIS-PSO and ELM since no 

ractical equation is provided. 

Based on the above results shown in Fig. 7 , a good estimate of

he volumetric sediment concentration seems to be essential for 

ncreasing the accuracy of the calculation of the particle Froude 

umber and consequently the minimum self-cleansing velocity for 

oth non-deposition criteria. In addition, hydraulic characteristics 

f the pipe (defined by the hydraulic radius) and the sediment 

haracteristics (i.e. particle diameter and specific gravity) are pro- 

ortionally important for model performance. 

. Discussion 

The prediction of self-cleansing conditions in sewers remains 

 challenge despite multiple models and equations developed and 

eported in the literature. Existing regression-based equations and 

I/ML models show limited generalisation capabilities and overfit- 

ing problems. In this paper, a new approach for addressing these 

ssues is proposed by using the Random Forest method. 

Due to the nature of the RF method, where the model variance 

s reduced by averaging the results from an ensemble of decision 

rees, the risk of overfitting is low. By using a reduced number of 

nput features for constructing each decision tree in the forest, the 

orrelation between base trees is avoided. This is an improvement 

f the method compared to a single decision tree, which can be 

vertrained (i.e. the tree learns the noise from the training data) 

nd thus shows poor performance in the testing dataset. 

RF model showed good generalisation capabilities when the 

hole dataset is divided into 75% for the training stage and 25% 

or the testing stage. For this percentage of split data, the testing 

rror presented a low variance. In contrast, by increasing the num- 

er of data used in the training stage (e.g. 95% of the whole data)

he testing error showed high variance, which is an indicator of 

n over-trained model with limited extrapolation capabilities (as 

hown in Fig. 3 b). Therefore, choosing the right percentage split is 

ritical to avoid model overfitting. 

Variable importance analysis showed that the volumetric sedi- 

ent concentration is the most relevant feature for predicting the 

elf-cleansing velocity in practice for both non-deposition criteria, 

ollowed by the dimensionless grain size. The self-cleansing predic- 

ion is no conditioned by the channel material, as the low variable 

mportance shown by the channel friction factor. 

RF results are compared to existing models reported in the lit- 

rature and showed better performance for the whole dataset for 

oth non-deposition without and with deposited bed criteria. This 

s explained by several factors, such as: 

• RF is able to better capture the non-linearity in the data com- 

pared to linear regression models (i.e. regression-based models 

proposed by May et al. (1996) and Safari and Aksory (2020) ). 

The RF model also better captures complex interactions be- 

tween features. This is because of RF model’s ability to capture 

effectively non-linear patterns in data. 
• RF showed a good bias-variance trade-off (i.e. low bias and low 

variance) for both non-deposition criteria. In contrast, exist- 

ing non-regression models reported in the literature (i.e. MARS, 

ANFIS-PSO and ELM), and compared to the RF model in this 

paper, in some cases presented low bias and high variance (i.e. 

overfitting) for the non-deposition without deposited bed crite- 

rion, as shown in Fig. 5 . For the non-deposition with deposited 
10 
bed criterion, the existing models (i.e. PSO, LASSO and MGP) 

showed high bias, since these models systematically underes- 

timate the particle Froude number in the testing dataset (as 

shown in Fig. 6 ). 
• The range of variation used for training and testing the RF 

model is much larger than the dataset used in the literature 

for developing the existing predictive models. For example, the 

ANFIS-PSO and ELM were trained and testing with the Ab Ghani 

(1993) , Ota (1999) and Vongvisessomjai et al. (2010) data (i.e. 

290 data approx.). Given this, the RF model developed here is 

able to predict the particle Froude number for a larger range 

of variation of the input conditions. An example of this is 

shown in Fig. 6 where the existing models reported for the 

non-deposition with deposited bed criterion underestimate the 

particle Froude number for values above 9.0 ( F r 
∗

> 9.0). 

Despite the RF presented in this study outperforms the existing 

odels reported in the literature, further tests with data collected 

n real sewers should be conducted. The cohesive effects of the de- 

osited material must be included for future developments. Finally, 

urther evaluation of the performance of the model in trapezoidal, 

void, or U-shape channels should be carried out to check the ap- 

licability of the model under these channel characteristics. 

. Conclusions 

Random Forest based model was developed for predicting the 

elf-cleansing velocity under the concept of non-deposition. This 

odel was implemented using the experimental benchmark data 

eported in the literature. The RF model was compared to the fol- 

owing ten literature models: EPR-MOGA, MARS, MGP, ANFIS-PSO, 

LM, LASSO, GEP and PSO, and two regression-based equations 

roposed by May et al. (1996) and Safari and Aksoy (2020) . 

The following conclusions are made based on the results ob- 

ained: 

(1) Random Forest model is able to predict the particle Froude 

number (i.e. minimum self-cleansing velocity) for the non- 

deposition self-cleansing design criteria with high accuracy 

on validation (i.e. unseen) data. This is due to the ability of 

RF to better generalise the analysed data, i.e. the ability to 

avoid model overfitting. 

(2) RF model prediction accuracy is consistently superior to ten 

other literature models considered here. This is likely due to 

the reason mentioned above but also the capability to bet- 

ter capture the complex interactions between input variables 

when compared to other models considered in this paper. 

This is especially relevant for the non-deposition with de- 

posited bed case where the accuracy of RF model predictions 

is substantially higher than in other models (i.e. LASSO, MGP 

and PSO models). 

(3) The volumetric sediment concentration is the most impor- 

tant input variable for predicting the self-cleansing veloc- 

ity in sewer pipes. A good characterisation of this parame- 

ter seems to be essential for improving the design of new 

self-cleansing sewers. 

Based on the above, RF can be used for predicting self-cleansing 

elocity with high accuracy, especially for large sewer pipes with 

he presence of deposited bed. This technique can be used for de- 

igning self-cleansing sewer systems. 

Further testing of the RF and other self-cleansing models in real 

ewer systems is required to further validate these models in those 

ircumstances and ensure their applicability in engineering prac- 

ice. 
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