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RESEARCH ARTICLE

Prioritizing inspection of sewer pipes based on self-cleansing criteria
Sergio Vanegas , Carlos Montes and Juan Saldarriaga

Department of Civil and Environmental Engineering, Universidad de Los Andes, Bogotá, Colombia

ABSTRACT
This paper aims to develop a sediment deposits hydraulic deterioration model based on self-cleansing 
criteria to prioritize the inspection of sewer systems. The model was trained with benchmarking literature 
values from earlier experiments and validated with household connections complaints data from Bogotá, 
Colombia. Recursive Feature Elimination with Cross-Validation (RFECV) and Bayesian Optimization (BO) 
were used to construct a Random Forest (RF) model to predict, at pipe level, the likelihood for a pipe to 
present sediment deposits. To evaluate the model’s prediction accuracy, two different performance 
indicators were used: (i) the Percentage of Effective Inspections, and (ii) Pipes per Inspection with 
sediments. The sediment deposits hydraulic deterioration model shows good overall performance with 
buffer zones radiuses of 250 m predicting which pipes tend to present sediment deposits over time. This 
model improves the understanding of sediment deposits in hydraulic deterioration models and can be 
used to prioritize inspection of sewer systems.
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Introduction

Sewer systems performance is a constant challenge for water 
utilities, due to the changing environment and the low flexibility 
in space for infrastructure associated with constraints in terrain 
gradients and fixed locations (Tscheikner-Gratl et al. 2019). As 
a result, collecting information from sewer systems is both 
expensive and time-consuming for water utilities (Hahn et al. 
2002; Elmasry, Zayed, and Hawari 2018). Those utilities have 
traditionally addressed the inspection of sewer systems with 
a reactive approach (Ariaratnam, El-Assaly, and Yang 2001; 
Rodríguez et al. 2012) or a poor proactive approach (Tscheikner- 
Gratl et al. 2019), which represent an inefficient expend of limited 
funds. Consequently, prioritizing inspection with available data 
from sewer systems is important for a cost-effective strategy to 
ensure the network is functioning appropriately.

To address this issue, several authors have developed struc
tural and hydraulic deterioration models for sewer systems. 
Structural deterioration models (Ariaratnam, El-Assaly, and 
Yang 2001; Tran, Ng, and Perera 2007; Zhou et al. 2008; 
Harvey and McBean 2014; Caradot et al. 2017; Yin et al. 2020) 
are more common and are related to structural defects, such as 
surface damage, cracks and fractures. Hydraulic deterioration 
models are commonly used to complement structural dete
rioration models (Hahn et al. 2002; Berardi et al. 2008; Hawari 
et al. 2017; Elmasry, Hawari, and Zayed 2017; Elmasry, Zayed, 
and Hawari 2018; Daher et al. 2018; Ghavami, Borzooei, and 
Maleki 2020). The latter are related to operational defects, such 
as infiltration, soil intrusion, tree root intrusion and sediment 
deposits, which reduce the hydraulic capacity of sewer pipes. In 
general, structural and hydraulic deterioration models are used 
in asset management to prioritize inspection of sewer systems 
to ensure acceptable network performance.

Existing models can be classified, according to their model
ling technique, into three categories (Tscheikner-Gratl et al. 
2019): (i) deterministic, (ii) statistical and (ii) Artificial 
Intelligence (AI) models. Deterministic models aim to under
stand the physical mechanisms leading to pipe deterioration, 
which implies the collection of accurate data under controlled 
environments for measuring specific variables. Statistical mod
els require less precise information as they define the model 
structure, in terms of input variables processing, prior to train
ing. AI models can determine complex interactions between 
variables without making assumptions (Tran 2007), which tends 
to increase their predictive capacity. Most authors have built 
statistical or AI models using information related to historical 
pipe performance, which is usually collected and stored by 
water utilities through closed-circuit television (CCTV) 
inspections.

In general, sewer pipe deterioration is a continuous process 
affected by several aspects that are difficult to measure in 
practice. This makes the development of deterioration models 
a challenging task. Most of the models developed have been 
trained with historical data collected by water utilities, which 
makes them rely on the frequency and distribution of past 
events. As the training data of the models is based on historical 
events, their performance does not depend on the complete 
understanding of the deterioration phenomena (Rodríguez 
et al. 2012). In contrast, model accuracy is directly dependent 
on the quality of historical data collected in-situ. Usually, these 
deterioration models tend to show poor generalisation and 
extrapolation capabilities, i.e. accuracy is quickly lost when 
applied to external datasets (Tscheikner-Gratl et al. 2019). As 
a result, existing models can only be used in the sewer system 
of the site where the data was collected.
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To address this issue, specifically the poor generalisation of 
models, benchmarking experimental data is used for modelling 
sediment deposits that contributes to the process of hydraulic 
deterioration. This operational defect is one of the most com
mon hydraulic challenges in sewer systems, which can form 
blockages that reduce the pipes’ hydraulic capacity and may 
cause premature overflows (Tran 2007; Banasiak 2008; 
Rodríguez et al. 2012; Elmasry, Hawari, and Zayed 2017; 
Montes, Kapelan, and Saldarriaga 2019). As an example, 
Rodríguez et al. (2012) found that 54% of effective sediment- 
related failures (effective blockages) in Bogotá, Colombia, were 
related to sewer pipes; the other 24% and 22% of effective 
blockages were related to gully pots and manholes, respec
tively. Based on this, the development of a tool to prioritize the 
inspection of sediment deposits in pipes is important to pre
vent uncontrolled hydraulic deterioration due to this opera
tional defect.

This paper seeks to develop a sediment deposits hydraulic 
deterioration model based on non-deposition sediment trans
port concepts to prioritize the inspection of sewer systems. 
Experimental data of non-deposition without deposited bed 
and non-deposition with deposited bed was collected from 
literature to train a model that computes the likelihood of 
both conditions. This approach permitted predicting the like
lihood of a pipe having sediment deposits under different 
hydraulic conditions as the non-deposition with sediment bed 
condition is near the condition where permanent sediment 
deposits are formed. To measure the predictive capacity 
under pragmatic conditions to emulate the normal operation 
of a system, the model was implemented in one zone of the 
stormwater sewer system in Bogotá, Colombia. The aim is to 
improve the understanding of sediment deposits in hydraulic 
deterioration models and to use this knowledge to prioritize 
the inspection of sewer systems. In general, the developed 
model can show water utilities which areas they should have 
under supervision according to their inspections and different 
hydraulic conditions.

Methodology

Self-cleansing criteria concepts

To improve the understanding of sediment deposits in hydrau
lic deterioration models, non-deposition sediment transport 
concepts were used. This field of research has been studied 
by several authors (Ab Ghani 1993; Vongvisessomjai, 
Tingsanchali, and Babel 2010; Ebtehaj and Bonakdari 2016; 
Montes et al. 2020a, 2020b) who have developed regression- 
based models using experimental data collected at laboratory 
scale, to describe the behaviour of particles under certain flow 
conditions, especially under steady flow conditions. In general, 
Robinson and Graf (1972) identified two flow regimes: (i) non- 
deposition and (ii) deposition. The threshold between both 
flow regimes is determined by the critical velocity, which is 
related to the critical condition where particles begin to form 
a transitional bed at the bottom of the pipe. As these deposits 
reduce the hydraulic capacity of pipes, sewer systems are com
monly designed under the non-deposition regime, where flow 
velocities are higher than the critical velocity. This flow regime 

has been classified into two subgroups (Safari, Mohammadi, 
and Ab Ghani 2018): (i) non-deposition without deposited bed 
and (ii) non-deposition with deposited bed.

The first group, non-deposition without deposited bed, is 
a conservative approach for designing self-cleansing sewers in 
which sediment particles move separately and slowly at the 
bottom of the pipe, i.e. without forming a permanent or 
a transitional sediment deposit bed. Several authors (Mayerle 
1988; Ab Ghani 1993; May 1993; Vongvisessomjai, Tingsanchali, 
and Babel 2010; Montes et al. 2020a, 2020b) have studied these 
conditions to predict the minimum self-cleansing velocity for 
this flow regime. In general, these studies carried out extensive 
experimental research varying both sediment and flume/pipe 
properties, as shown in Table 1. With the data collected, several 
regression-based models to predict the sediment velocity that 
generates non-deposition without sediment bed conditions 
were developed.

The second group is less conservative and allows 
a transitional deposited loose bed as bedload. Several authors 
(May et al. 1989; El-Zaemey 1991; Ab Ghani 1993; Butler, May, 
and Ackers 1996) have found that a mean proportional sedi
ment depth (ys=D) close to 1.0% of the pipe diameter, increases 
the sediment transport capacity. In contrast to non-deposition 
without deposited bed, this flow regime is near the critical 
condition, and regular supervision of the systems is required 
for preventing the formation of permanent sediment deposits 
(Vongvisessomjai, Tingsanchali, and Babel 2010). In this con
text, several studies (Perrusquia 1991; El-Zaemey 1991; Ab 
Ghani 1993; Montes et al. 2020b) carried out at laboratory 
scale have studied this sediment transport mode varying the 
inlet conditions, as seen in Table 1. In the same manner, these 
studies developed different models to predict the sediment 
velocity under different hydraulic conditions and sediment 
characteristics that generate non-deposition with sediment 
bed conditions.

In general, non-deposition without deposited bed and non- 
deposition with deposited bed have been studied indepen
dently at laboratory scale as they are two different approaches 
for designing self-cleansing sewer pipes. Nevertheless, there is 
no quantitative threshold between these subgroups since the 
transition between them is almost imperceptible and requires 
complete knowledge of the phenomena to be able to identify 
it. In this study, as there is no numerical expression for this limit, 
the data-driven Random Forest (RF) technique is used to pre
dict the likelihood of each flow regime (i.e. non-deposition 
without deposited bed and non-deposition with sediment 
bed) under different flow conditions. As the non-deposition 
with deposited bed criteria is near the critical condition where 
stationary deposits are formed, this classification model can be 
used to develop a sediment deposits hydraulic deterioration 
model that, combined with Geographic Information Systems 
(GIS) can be implemented to prioritize the inspection of sewer 
systems. More details of the implementation are given below.

Literature data
Literature data for both non-deposition conditions were col
lected to train the RF model. Table 1 is modified from Montes, 
Kapelan, and Saldarriaga (2021) and summarize this 
information.
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As shown in Table 1, results from 541 and 408 tests were 
collected for non-deposition without deposited bed and non- 
deposition with deposited bed, respectively. In general, the 
following input variables were obtained for each test: d the 
mean particle diameter, SG the specific gravity of the sedi
ment, So the pipe slope, D the pipe diameter, Y the water 
level, R the hydraulic radius, V the flow velocity, λ the Darcy 
friction factor, and Cv the volumetric sediment concentration. 
Then, additional parameters such as, Dgr the dimensionless 
grain size and τ the shear stress were computed. The initial 
training dataset has 949 reference values collected from the 
literature. However, as the training dataset only considers 
a limited number of combinations between hydraulic condi
tions, pipe characteristics and sediment properties, its size 
directly affects the capabilities of extrapolation for 
a Machine Learning (ML) model. Models’ performance tend 
to increase with more data, but more data does not always 
imply an increase in performance; the quality of additional 
data and data pre-processing are equally important (Zhu et al. 
2016).

To address this issue, data augmentation based on physical 
knowledge of non-deposition flow regimes was used to gen
erate new records. The above means that new records were 
created based on the known physical principles of non- 
deposition flow regimes. The parameters that were constant 
through this procedure were D, S0 and Cv , while the filling ratio 
of the pipe and the sediment characteristics varied. These two 
parameters were varied because during experimental test col
lection in the study of Montes et al. (2020b), it was observed 
that certain changes in both parameters do not affect the non- 
deposition flow regime. The non-deposition without deposited 
bed condition is preserved when the filling ratio changed from 
the observed value in the experimental test until it reached 
85% with interval increases of 1% and with all the particles with 
lower mean diameter from the observed. The non-deposition 
with deposited bed condition is preserved when the filling ratio 
changed from the observed value in the experimental test until 
it reached 1% with interval decreases of 1% and with all the 
particles with greater mean diameter from the observed. The 
above was considered since this behaviour was observed dur
ing the experiments carried out by the authors in previous 
research (Montes et al. 2020a, 2020b). With this approach, 
454,595 different combinations of parameters were obtained 
to train the model.

Sediment deposits hydraulic deterioration model
RF is a supervised ML algorithm proposed by Breiman (2001) 
which consists of a combination of decision trees, where each 
tree is generated from identically distributed random vectors. 
These vectors are used to select training samples and input 
variables for each tree. With this approach, an ensemble of 
decision trees is generated, where each tree computes the 
output variable and the result is given by the average of all 
the ensemble (James et al. 2013). This procedure allows RF to 
find non-linear relations between variables and reduce model 
variance. However, RF performance is directly dependent on 
the input variables and the definition of the hyperparameters 
(e.g. maximum node depth and the number of trees, among 
others). To overcome these issues, Recursive Feature 
Elimination with Cross-Validation (RFECV) and Bayesian 
Optimization (BO) were used, respectively. Then, the Receiver 
Operating Characteristic (ROC) curve was constructed to deter
mine the likelihood cut-off (threshold for classification). Finally, 
the obtained RF model was integrated with GIS tools, such as: 
feature selection, buffer analysis, intersect analysis, feature 
layer creation, spatial join, and mapping. Figure 1 shows the 
implementation of the hydraulic deterioration model devel
oped here. More details of the methods used are described 
below.

RFECV is a combination of Recursive Feature Elimination 
(RFE) and Cross Validation (CV). RFE is a greedy search back
ward selection method that was introduced by Guyon et al. 
(2002) to improve the selection of input variables and reduce 
computational costs associated with this process. In general, 
this algorithm trains a classifier, then computes a scoring metric 
for each input variable and finally removes the least important 
one. This method was then combined with a CV resampling 
method, which allows the creation of training and testing sub
sets for each RFE iteration. Specifically, Stratified K Fold CV with 
k ¼ 3 was used for this procedure, which divides the original 
data in three subsets, including training, testing, and preserving 
the percentage of samples for each class. The accuracy CV score 
defined in Equation (1) was selected as scoring metric. Since the 
RF model predicts the likelihood of non-deposition without 
deposited bed and non-deposition with sediment bed under 
different flow conditions, a prediction is considered correct 
when a certain flow condition of the testing subset is classified 
according to the likelihood cut-off (threshold for classification) 
in the same flow regime as claimed in the testing subset. 

Table 1. Collected experimental data.

Reference Non-deposition criterion No. of tests Pipe diameter (mm) Particles diameter (mm) Pipe slope (%) Water level (mm)

Mayerle (1988) Without deposited bed 106 152 0.50–8.74 0.14–0.56 28–122
May (1993) Without deposited bed 27 450 0.73 0.04–0.30 222–338
Ab Ghani (1993) Without deposited bed 221 154, 305 and 405 0.46–8.30 0.04–2.56 23–338
Vongvisessomjai, Tingsanchali, 

and Babel (2010)
Without deposited bed 36 100 and 150 0.20–0.43 0.20–0.06 20–60

Montes et al. (2020a) Without deposited bed 44 242 1.33–1.51 0.2–0.8 24–161
Montes et al. (2020b) Without deposited bed 107 595 0.35–2.6 0.04–3.43 11–218
Perrusquia (1991) With deposited bed 38 225 0.9 0.02–0.06 23–115
El-Zaemey (1991) With deposited bed 290 305 0.53–8.40 0.18–0.44 39–203
Ab Ghani (1993) With deposited bed 26 450 0.73 0.07–0.47 204–345
Montes et al. (2020b) With deposited bed 54 595 0.47–2.60 0.46–5.42 14–91
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Accuracy CV score ¼
Correct predictions in test dataset

Total number of predictions in test dataset
(1) 

For this process, the RF was trained with 100 trees with the Gini 
Impurity index as the main criterion for measuring the quality of 
a split and with no restriction over the maximum depth. The 
Python library scikit-learn (Pedregosa et al. 2015) was used for 
implementing RFECV and RF algorithms. Figure 2(a) shows the 
accuracy CV score for each number of selected features in RFECV, 
the possible features for the model were: d, SG, So, D, Y, R, V , λ, Dgr 

and τ. The highest CV score was obtained for four selected 
features: D, Y, V and λ. Figure 2(b) shows the importance of the 
selected features, computed with the Gini Impurity Index. As 
shown in this figure, the most important features are the flow 
velocity, i.e. the mean velocity of the pipe computed with the 
filling ratio and the Darcy Weisbach – Colebrook White coupled 
equation for part-full flow, and the pipe diameter, respectively.

BO is a sequential optimization method that commonly uses 
Gaussian Processes (GP) to fit an unknown objective function 
(Wang et al. 2016). BO uses GP approximation to lead explora
tion of solution space for areas that are expected to give more 
information about the solution space, which is then used to 
update the distributions of the approximated objective func
tion (Garrido-Merchán and Hernández-Lobato 2020). As the 
objective function for RF hyperparameter tuning is an unknown 
non-convex function, BO is used for selecting the hyperpara
meters. For this process, the RF algorithm was trained with the 
input variables obtained from RFECV. Additionally, RF hyper
parameters and their space of solutions were defined as fol
lows: (i) number of trees, integer solution between 100 and 400; 
and (ii) maximum depth, integer solution between 3 and 10. 

The Python libraries scikit-learn (Pedregosa et al. 2015) and 
scikit-optimize (Head et al. 2018) were used for implementing 
RF algorithm and BO, respectively. For the BO process, 5 ran
dom starts, 15 iterations and accuracy as metric were defined as 
parameters. The obtained hyperparameters were: (i) number of 
trees equivalent to 400 and (ii) maximum depth of 5.

ROC curve is a graphical analysis tool that plots the relation
ship between true positive rate (TPR) and false-positive rate 
(FPR) for a classification model considering different likelihood 
cut-offs. Figure 2(c) shows the ROC curve for the RF model 
using the input variables from the RFECV and the hyperpara
meters from BO. This analysis is used to select the likelihood 
cut-off that best fits the model requirements. This value will be 
used as the threshold for the classification in the RF model. As 
predicting false positives pipes is associated to an inefficient 
use of funds, a likelihood cut-off of 0.55 is selected, with a TPR 
of 0.839 and a FPR of 0.000.

The obtained RF model is integrated with GIS tools to obtain 
the sediment deposits hydraulic deterioration model. In gen
eral, this process is made using arcpy Python library from 
ArcGIS, which allows to integrate GIS files and use them as 
input for the classification model. Additionally, the predictions 
made with the RF model are integrated with two GIS features: 
the network connectivity matrix and buffer zones. The network 
connectivity matrix makes possible the consideration of pipes 
surroundings at underground level. This is important for the 
sediment deposits predictions, as this operational defect 
reduces the hydraulic capacity of a pipe, which directly affects 
adjacent pipes. Buffer zones are used to delimit the influence 
area of water utilities inspections, which permits the model to 
have real-time data of the pipes that can present sediment 
deposits and those that have been recently inspected. Using 

Figure 1. Sediment deposits hydraulic deterioration model development.
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this approach, the likelihood of a pipe having sediment depos
its under different hydraulic conditions can be predicted at 
pipe level.

Discrete dynamic simulation and performance measures
A discrete dynamic simulation was built to evaluate the 
model performance over time. This discrete dynamic simu
lation consisted of integrating the RF model with GIS tools 
to simulate the network sediment deposits state at pipe 
level by days. For this process, the following parameters 
were defined: (i) starting date, (ii) number of time steps, 
(iii) timesteps for the RF model, (iv) radiuses of the buffer 
zones for inspections that are used to create areas in which 
inspections are considered effective (i.e. an inspection in 
which sediment deposits have been found), (v) maintenance 
time frame for inspections that defines the number of time
steps in which the buffer zone of an inspection is active, 
which means that the pipes within the buffer zone are not 
considered as candidates for developing sediment deposits 
during this time frame, (vi) sediment deposits likelihood 
increasing factor that emulates the reduction in the hydrau
lic capacity pipes caused by physical impact of sediment 
deposits in adjacent pipes. For example, an increasing factor 
of 1.10 means that the likelihood of developing sediment 
deposits is 10% higher than otherwise and (vii) performance 
measures for each timestep of the simulation.

For each day in the simulation time, the sediment deposits 
hydraulic deterioration model verifies which inspections were 
made by the Empresa de Acueducto y Alcantarillado de Bogotá 
(EAB), and creates a buffer zone around records for that 
specific day with a defined radius and a maintenance time 
frame. During this time frame, the buffer zone is active which 
means he pipes within this area are not considered for the 
prediction of the state for sediment deposits. In general, these 
predictions are made under random hydraulic conditions, gen
erated specifically with a random filling ratio, where the like
lihood of a pipe to have sediment deposits is computed every n 
timesteps. The likelihood is affected by an increasing factor 
which is computed only if the pipe that is being simulated 
has an adjacent pipe with sediment deposits according to the 
model. If the RF model classifies the state of a pipe as ‘with 
sediment deposits’, this state is preserved until the pipe is 
inspected. A pipe is inspected once it is within a buffer zone 

of an inspection. Additionally, for each day the following out
puts are computed according to the starting date (t) and num
ber of days that the simulation has been running (δ):

● Total Inspections (TIt;tþδ): Defined as the total number of 
registered inspections from t to t þ δ.

● Failed Inspections (FIt;tþδ): Defined as the total number of 
failed inspections from t to t þ δ. An inspection is consid
ered as non-satisfactory if there are no pipes with sedi
ment deposits within the radius of the defined buffer 
zone, which means that the inspection made by the 
water utility did not found any pipe that needed to be 
cleansed. It is important to point out that the simulations 
works only with inspections related with the cleansing of 
the stormwater sewer system.

● Pipes with sediments confirmed by inspection (IPt;tþδ): 
Defined as the total number of inspected pipes with sedi
ments from t to t þ δ. A pipe is considered with sediments 
confirmed by inspection if it was within the defined buffer 
zone radius with sediment deposits, which means that the 
inspection made by the water utility found at least one pipe 
that needed to be cleansed in the buffer zone.

With these outputs, the following performance measures for 
each simulation day are defined to evaluate model’s prediction 
accuracy: Percentage of Effective Inspections (PEIt;tþδ) and 
Pipes per Inspection with sediments (PPt;tþδ). PEIt;tþδ quantifies 
how many inspections were effective during the simulation, 
while PPt;tþδ shows how many pipes could be cleansed by the 
water utility by inspection with a defined buffer zone radius.

Equations (2) and (3) show these calculations, respectively: 

PEIt;tþδ ¼ 100% �
TIt;tþδ � FIt;tþδ

TIt;tþδ
(2) 

PPt;tþδ ¼
IPt;tþδ

TIt;tþδ � FIt;tþδ
(3) 

It is important to highlight that some of the outputs from the 
performance measures depend directly on the buffer zones 
radiuses. Therefore, the performance measures change when 
the buffer zones radiuses is varied. In general, these measures 
increase with increases in the buffer zones radiuses. However, 

Figure 2. Sediment deposits hydraulic deterioration model results. (a) Cross Validation Score according to the number of selected features, (b) The features importance 
in the Random Forest model, and (c) The ROC curve for the model.
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increases in the buffer zones radiuses can be related to less 
accuracy in the model, because more area is needed to be 
inspected for each inspection.

For the simulations, the selected starting date was 2019–09- 
09; the total time of simulation were 200 days; the timesteps for 
the RF model was 4 days; the maintenance time frame was 
generated randomly for each register in the database of 61 
registers related with the cleansing of the stormwater system 
from a discrete cumulative probability distribution function 
obtained from historical data; the buffer zones radiuses for 
inspections was evaluated for 150 m, 200 m, and 250 m; and 
the sediment deposits likelihood increasing factor was evalu
ated for 1.10, 1.25 and 1.40. The defined performance measures 
were obtained for each day with t ¼ 0 and δ equivalent to the 
simulation day.

Case Study: Zone 1 Bogotá

In this study, the developed sediment deposits hydraulic dete
rioration model was validated with data from the household 
connections’ complaints database from Bogotá. The EAB 
divides the sewer system of the city of Bogotá in five opera
tional zones. Only Zone 1 was selected for validating the 
hydraulic sediment deposits deterioration model. This zone 
has about 597,592 household connections, 92% of them are 
classified as residential and are distributed in an area of 
approximately 177 km2.

The GIS geodatabase of the stormwater sewer system has 
20,939 pipe sections with information of diameters, slopes, 
materials, invert elevation, age, and length. The total pipe 
length of the stormwater sewer system is 908 km. However, 
some records had unknown or inconsistent information, e.g. 
extremely steep or unknown slopes and/or extremely large or 
unknown diameters. These pipes with missing data were elimi
nated to prevent using unknown data during the simulations. 
After data cleansing, 15,022 pipe sections were obtained for 
validating the sediment deposit hydraulic deterioration model. 
Figure 3(a) shows the distribution of the pipe section slopes in 
the network, which are mostly less than 1%. In total, 5917 were 
not considered for the simulation, however they are distributed 
along all the network and do not affect the general network 
connectivity. Nevertheless, if in the future the model is going to 
be implemented by a water utility, it is highly recommended to 
have complete data for the simulated network. Figure 3(b) 
shows the distribution of the pipe diameters in the system, 

where most values range from 300 mm to 600 mm. Finally, 
Figure 3(c) shows the distribution of the pipe materials in the 
stormwater sewer system, where the most common material 
found is concrete, followed by PVC and clay.

For the case study, the EAB has two main record databases. 
The first one has maintenance records of sanitary and storm
water sewer pipes from 2008 to 2018, which are used to analyse 
the behaviour of the network throughout time. The database 
has 14,810 records associated to sewer cleansings between 
2010 and 2018. These records were used to estimate the time 
between inspections adjusting a discrete cumulative probabil
ity distribution function for obtaining the maintenance time 
frame for the simulation. The second database has 61 records 
that are inspections related with the cleansing of the storm
water sewer system. These inspections are made by visual 
inspection as soon as possible, according to household con
nections’ complaints. This database was used to test the model 
developed here with the assumption that each record is an 
inspection where the cleansing was effectively made. More 
details about how this database information was used are 
described in the section below.

Results and discussion

Results

Figure 4 shows an example of the map results during the 
discrete dynamic simulation for buffer zones radiuses of 
250 m and the sediment deposits likelihood increasing factor 
equivalent to 1.25. It is important to highlight that in the map 
the pipes with sediment deposits are obtained according to the 
model. Figure 4(a) shows a region of the case of study on 
30 October 2019 where seven inspections are active (the time
step is included during the maintenance time frame of the 
inspections), which means the pipes within their buffer zones 
are not considered as candidates for the prediction of the 
deposition state. Figure 4(b) shows the same region the 
next day, where seven inspections are active, but one of the 
active inspections of the previous day was deactivated (the 
maintenance time frame of this inspection ends) and a new 
inspection became active. Comparing Figure 4(a,b), when the 
new inspection is active in Figure 4(b) the pipes that the 
deterioration model had identified in previous days with sedi
ment deposits were cleansed. On the other hand, when the 
other inspection was deactivated, the pipes within its buffer 
zone are now considered by the deterioration model and 

Figure 3. Stormwater sewer system description plots. (a) Slopes Histogram, (b) Diameters Histogram, and (c) Materials Barplot.
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sediment deposits are identified. Additionally, from Figure 4 
the impact of the likelihood increasing factor can be identified 
as sediment deposits are usually identified on adjacent pipes.

Figure 5 was constructed with the values for the perfor
mance measures for each day differentiating the values for 
the buffer zones radiuses and the sediment deposits likelihood 
increasing factor. The curves show the evolution of the perfor
mance indicator over time. The expected behaviour is that 
these indicators converge to one value over time. Figure 5(a, 
b) are obtained for buffer zones radiuses of 150 m, Figure 5(c,d) 
are obtained for buffer zones radiuses of 200 m and Figure 5(e, 
f) are obtained for buffer zones radiuses of 250 m. Figure 5(a,c 
and e) show the behaviour of PEIt;tþδ and Figure 5(b,d and f) 
show the behaviour of PPt;tþδ, both for different values of the 
sediment deposits likelihood increasing factor. The following 
observations can be made from Figure 5:

● The highest PEI0;200 for all the buffer zones radiuses is 
obtained with a sediment deposits likelihood increasing 
factor of 1.25. The PEI0;200 obtained values are 65%, 70% 
and 83%; for 150 m, 200 m, and 250 m; respectively. While 
the lowest PEI0;200 for all the buffer zones radiuses is 
obtained with a sediment deposits likelihood increasing 
factor of 1.10. The PEI0;200 obtained values are 62%, 68% 
and 80%; for 150 m, 200 m, and 250 m; respectively.

● For Figure 5(a) the PEI0;200 for all increasing factors are 
around 63%, for Figure 5(c) the PEI0;200 for all increasing 
factors are around 69% and for Figure 5(e) the PEI0;200 for 
all increasing factors are around 82%. As Figure 5(a,c and 
e) are constructed with buffer zones radiuses of 150 m, 
200 m and 250 m, increases of 5 m in the buffer zones 
radiuses suggest an increase on average of 1% in PEI0;200.

● The highest PP0;200 for all the buffer zones radiuses is 
obtained with a sediment deposits likelihood increasing 
factor of 1.40. The PP0;200 obtained values are 2.54 pipes, 
4.22 pipes and 5.53 pipes; for 150 m, 200 m, and 250 m; 
respectively. While the lowest PP0;200 for all the buffer 
zones radiuses is obtained with a sediment deposits like
lihood increasing factor of 1.10. The PP0;200 obtained 
values are 2.14 pipes, 3.27 and 4.06; for 150 m, 200 m, 
and 250 m; respectively.

● For Figure 5(b) the PP0;200 for all increasing factors are 
around 2.35 pipes, for Figure 5(d) the PP0;200 for all 
increasing factors are around 3.81 pipes, for Figure 5(f) 
the PP0;200 for all increasing factors are around 4.83 pipes. 
As Figure 5(b,d and f) are constructed with buffer zones 
radiuses of 150 m, 200 m and 250 m, increases of 50 m in 
the buffer zones radiuses suggest an increase on average 
of 1.245 pipes in PP0;200.

Discussion

Considering the results presented in Figures 4 and 5, and their 
respective observations, the following remarks are made:

● As it was mentioned in the description of Figure 4, it is 
pertinent to mention the importance of the likelihood 
increasing factor. Figure 4(a,b) show that the deterioration 
model tends to identify sediment deposits in adjacent pipes 
due to the likelihood increasing factor. This is relevant for 
the deterioration model because it emulates the reduction 
in the hydraulic capacity pipes caused by sediment depos
its. This operational defect directly affects adjacent pipes 
and pushes toward the creation of more sediment deposits.

● In Figure 4(a,b), it can be identified that some regions are 
predisposed to present sediment deposits. This is caused 
by two main aspects: (i) the likelihood increasing factor 
and (ii) similarities in pipe characteristics. The first aspect 
was discussed in the previous remark and contributes to 
identifying some specific areas with sediment deposits. 
The second aspect is more related to sewer design, where 
in small regions similar pipes characteristics are chosen to 
avoid flow disturbances. As similar pipe characteristics are 
chosen, the obtained hydraulic conditions are also similar. 
This implies that if a pipe tends to present sediment 
deposits, another pipe with similar characteristics is also 
likely to have this operational defect, which explains the 
concentration of sediment deposits in some regions.

● Figure 5 shows that the best overall results are obtained 
with a buffer zones radiuses of 250 m and an increasing 
factor of 1.25. Figure 5 also suggest that if the buffer zones 
radiuses is increased the performance measures will tend 

Figure 4. Map results example for buffer zone radius 250 m and likelihood increasing factor of 1.25. Stars, circles and wide lines denote the inspections, buffer zone 
radius and pipes with sediment deposits, respectively. (a) Shows the simulation result on 2019–10-30, and (b) Shows the simulation result on 2019–10-31.
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Figure 5. Performance measures. a) and b) for buffer zone radius of 150 m, c) and d) for buffer zone radius of 200 m, e) and f) for buffer zone radius of 250 m.
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to increase as well. However, it is desirable to make the 
buffer zones radiuses smaller to obtain higher precision 
for each inspection, which is associated with a better use 
of water utilities funds.

● The obtained sediment deposit hydraulic deterioration 
model can be used in any sewer network with GIS infor
mation, as it was trained with benchmarking experimental 
data. This feature makes the model not dependent of any 
sewer network, which fixes the poor generalisation and 
extrapolation capabilities of other models. Nevertheless, 
the historical data from the sewer networks can be used 
to evaluate the model performance measures and assess 
its precision in other sewer networks.

● The sediment deposit hydraulic deterioration model can 
be used by water utilities to prioritize the inspection of 
sewer systems, as this model identifies regions that are 
predisposed to deposition and updates its results based 
on the water utilities operation.

● Considering that predictions for each time step are made 
under random hydraulic conditions, specifically a random 
filling ratio, it is important to highlight the importance of 
simulating multiple rounds, because this ensures that on 
some rounds, the likely places of sedimentation will be 
spotted by the model. For further research, the hydraulic 
conditions can be complemented with hydrological models.

Conclusions

This paper proposes a sediment deposits hydraulic deteriora
tion model based on self-cleansing criteria. The model was 
constructed with experimental data collected from literature 
and was evaluated through a discrete dynamic simulation with 
historical records from the EAB. The model performance was 
measured with two indicators, which helped to understand the 
behaviour of the model along simulation time. The following 
conclusions are made based on the obtained results:

(1) The sediment deposits hydraulic deterioration model 
presented here shows a good performance for the 
dynamic discrete simulation with the EAB historical 
data. The best overall results were obtained for a buffer 
zones radiuses of 250 m and a sediment deposit increas
ing factor of 1.25. In general, model performance is not 
sensible to the sediment deposits increasing factor, but 
performance tends to increase as the buffer zones 
radiuses increases. However, it is important to remark 
that it is convenient to have smaller buffer zones 
radiuses to obtain higher precision for each inspection, 
as the radiuses of the buffer zones emulates the scope of 
the inspections made by the water utility, which objec
tive is to be more precise to minimize their costs.

(2) The experimental data collected, as well as the data 
augmentation strategies were quite useful for training 
the sediment deposits hydraulic deterioration model. 
This approach fixes the poor generalisation and extra
polation capabilities of other models, as it makes the 
model independent of the sewer network where it is 
implemented.

(3) The most important input variables for predicting the 
sediment deposits state at pipe level for the sediment 
deposits hydraulic deterioration model are the flow 
velocity, the pipe diameter, the water level, and the 
Darcy friction factor. These variables can be easily col
lected or computed from sewer design and installed 
sensors in the sewer network.

Based on the above, the sediment deposits hydraulic dete
rioration model can be useful for prioritizing the inspection of 
sewer systems, as it shows good overall performance in pre
dicting which pipes tend to present sediment deposits with 
different hydraulic conditions over time. Further research is 
recommended to test the performance of the sediment depos
its hydraulic deterioration model in different networks. In addi
tion, it is desirable to preserve or increase the model accuracy 
making the buffer zones radiuses smaller. The obtained model 
can be improved with: (i) hydrological runoff models, which 
may be more accurate in determining the actual hydraulic 
conditions over pipes, and (ii) recomputing buffer zones using 
distance along the network instead of using radius.
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