# PROYECTO DE GRADO EN INGENIERÍA CIVIL

# ESTRUCTURAS SUDS MÁS APROPIADAS PARA PAÍSES TROPICALES CON INTENSIDADES DE LLUVIA ALTAS

Gabriel Ernesto Centanaro Garcia

Asesor: Juan G. Saldarriaga Valderrama



UNIVERSIDAD DE LOS ANDES
FACULTAD DE INGENIERÍA
DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL
PREGRADO EN INGENIERÍA CIVIL
BOGOTÁ D.C.
AGOSTO DE 2020

# **AGRADECIMIENTOS**

A mis padres, que me acompañaron, apoyaron y me brindaron todas las herramientas y oportunidades que necesité, y más, para culminar mi proyecto de grado y mi carrera académica.

A Juan Guillermo, por su interés y dedicación en mi trabajo y por los constantes consejos que me ayudaron a formar una mente más crítica y profunda en la ingeniería.

A Andrés Aguilar, un gran ingeniero que prestó su tiempo para ayudarme con algunas etapas de este proceso.





# **TABLA DE CONTENIDO**

| 1             | Introducción     |       |                                                     |    |  |
|---------------|------------------|-------|-----------------------------------------------------|----|--|
| 1.1 Objetivos |                  | Obje  | etivos                                              | 2  |  |
|               | 1.1.             | 1     | Objetivo General                                    | 2  |  |
|               | 1.1.             | 2     | Objetivos Específicos                               | 2  |  |
| 2             | Mar              | co te | órico                                               | 3  |  |
|               | 2.1              | Ciclo | o hidrológico                                       | 3  |  |
|               | 2.2              | Esco  | orrentía                                            | 3  |  |
|               | 2.2.             | 1     | Problemas ambientales                               | 4  |  |
|               | 2.2.             | 2     | Problemas en ciudades                               | 4  |  |
|               | 2.3              | Pred  | cipitación en países tropicales                     | 4  |  |
|               | 2.3.             | 1     | Curvas Intensidad – Duración – Frecuencia (IDF)     | 9  |  |
|               | 2.3.             | 2     | Método de los bloques alternos                      | 11 |  |
|               | 2.4              | Prác  | ticas de drenaje sostenible                         | 12 |  |
|               | 2.5              | Caso  | os de estudio                                       | 15 |  |
|               | 2.5.             | 1     | Proyecto AQUAVAL, Valencia, España.                 | 15 |  |
|               | 2.5.             | 2     | Technische Universitat Dresden Campus               | 18 |  |
|               | 2.5.             | 3     | Cuenca de Hexi, en la ciudad de Nanjing, China      | 20 |  |
|               | 2.5.             | 4     | Ciudad de Seúl, Corea del sur                       | 23 |  |
|               | 2.5.             | 5     | Jardín de infiltración en la ciudad de Xi'an, China | 25 |  |
|               | 2.5.             | 6     | Distrito de Jin´an, Ciudad Fuzhou, Sureste de China | 28 |  |
| 3             | Met              | odol  | ogía                                                | 32 |  |
|               | 3.1              | Caso  | o de estudio: Cajicá                                | 32 |  |
|               | 3.2              | Fase  | e 3 del P.M.A                                       | 33 |  |
|               | 3.3              | Mod   | delo EPA SWMM                                       | 34 |  |
|               | 3.3.             | 1     | Trazado de la red, cuencas, nodos y tuberías        | 34 |  |
|               | 3.3.2 Hietograma |       | Hietograma de diseño                                | 35 |  |





|   | 3.   | 3.3              | Cuencas hidrológicas                      | 36 |  |  |  |  |
|---|------|------------------|-------------------------------------------|----|--|--|--|--|
|   | 3.   | 3.4              | Tuberías                                  | 41 |  |  |  |  |
|   | 3.4  | Anál             | isis por realizar                         | 46 |  |  |  |  |
|   | 3.   | 4.1              | SUDS escogido: Techo verde (TV)           | 47 |  |  |  |  |
|   | 3.   | 4.2              | SUDS escogido: Pavimento Permeable (PP)   | 49 |  |  |  |  |
|   | 3.   | 4.3              | SUDS escogido: Zanja de infiltración (IT) | 51 |  |  |  |  |
| 4 | Re   | esultado         | os                                        | 53 |  |  |  |  |
|   | 4.1  | Cuer             | nca Noroccidental                         | 53 |  |  |  |  |
|   | 4.2  | Cuer             | nca Nororiental 1                         | 54 |  |  |  |  |
|   | 4.3  | Cuer             | nca Nororiental 2                         | 55 |  |  |  |  |
|   | 4.4  | Cuer             | nca Nororiental 3                         | 56 |  |  |  |  |
|   | 4.5  | 4.5 Cuenca Sur 1 |                                           |    |  |  |  |  |
|   | 4.6  | Cuer             | nca Sur 2                                 | 58 |  |  |  |  |
|   | 4.7  | Cuer             | nca Sur 3                                 | 59 |  |  |  |  |
|   | 4.8  | Cuer             | nca Sur 4                                 | 60 |  |  |  |  |
|   | 4.9  | Cuer             | nca Sur 5                                 | 61 |  |  |  |  |
|   | 4.10 | Cuer             | nca Sur PTAR                              | 62 |  |  |  |  |
| 5 | Ar   | nálisis d        | álisis de resultados64                    |    |  |  |  |  |
| 6 | Co   | onclusio         | nclusiones60                              |    |  |  |  |  |
| 7 | Re   | ecomen           | daciones                                  | 67 |  |  |  |  |
| 8 | Bi   | bliograf         | ía                                        | 68 |  |  |  |  |
| 9 | Δι   | nexos            | exas 71                                   |    |  |  |  |  |





# **ÍNDICE DE FIGURAS**

| llustración 1 inundaciones en Bogota, Colombia. Tomado de (El Espectador, 2020)                                                                                                               | 5      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Ilustración 2 Precipitación por año por país Fuente: (Food and Agriculture Organization of the United Nations, 2014)                                                                          |        |
| llustración 3 Precipitación media mundial (The World Bank Group, 2019)                                                                                                                        | 7      |
| llustración 4 Hietograma de un aguacero de 30 minutos                                                                                                                                         | 8      |
| llustración 5 Curvas IDF Fuente: (Empresa de Servicios Públicos de Cajicá S.A. E.S.P. & INGEQMA, 200                                                                                          | 18) 10 |
| llustración 6 Edificio BTS en Bogotá, techo verde instalado. Fuente: (Groncol, 2020)                                                                                                          | 13     |
| llustración 7 Humedales en el centro empresarial <i>Elemento</i> , Bogotá                                                                                                                     | 13     |
| llustración 8 Parque Simón Bolívar (Instituto Distrital de Recreación y Deporte, 2017)                                                                                                        | 14     |
| Ilustración 9 Pavimento Permeable (United States Environmental Protection Agency, 2015)                                                                                                       | 15     |
| llustración 10 Franja de infiltración del lugar 1                                                                                                                                             | 16     |
| llustración 11 Franja de infiltración del lugar 2                                                                                                                                             | 16     |
| llustración 12 Techo verde del lugar 3                                                                                                                                                        | 17     |
| llustración 13 Resultados de las estructuras SUDS (Sara Perales-Momparler, 2013)                                                                                                              | 17     |
| Ilustración 14 Campus de la universidad alemana <i>Technische Universitat Dresden.</i> Tomado de: (Wen 2020)                                                                                  | -      |
| llustración 15 Modelo de EPA SWMM para el caso de estudio 2                                                                                                                                   | 19     |
| llustración 16 Resultados caso de estudio 2                                                                                                                                                   | 20     |
| llustración 17 Área de estudio de Hexi, Nanjing, China. Tomado de: (Maochuan Hu, 2017)                                                                                                        | 21     |
| Ilustración 18 Resultados caso de la cuenca de Neri                                                                                                                                           | 23     |
| Ilustración 19 Lugares de estudio en Seúl, Corea del Sur (Chaeyoung Bae, Effects of low-impact deve practices for flood events at the catchment scale in a highly developed urban area, 2020) | •      |
| Ilustración 20 Resultados caso de estudio de Seúl, Corea del Sur                                                                                                                              | 25     |
| Ilustración 21 Área de estudio                                                                                                                                                                | 26     |
| Ilustración 22 Jardín de infiltración del caso 5                                                                                                                                              | 26     |
| Ilustración 23 Resultados caso de estudio 5 (mayo, 2013)                                                                                                                                      | 27     |
| Ilustración 24 Resultados caso de estudio 5 (junio, 2013)                                                                                                                                     | 27     |
| Ilustración 25 Resultados caso de estudio 5 (julio, 2013)                                                                                                                                     | 27     |





| Ilustración 26 Resultados caso de estudio 5 (julio, 2014)                                                   | 28 |
|-------------------------------------------------------------------------------------------------------------|----|
| llustración 27 Área de estudio, caso Jin'an                                                                 | 29 |
| Ilustración 28 Resultados caso de estudio Jin'an                                                            | 31 |
| llustración 29 Localización del municipio de Cajicá                                                         | 33 |
| llustración 30 Trazado de la red en la Fase 3 del P.M.A. Cajicá                                             | 35 |
| llustración 31 Hietograma de análisis                                                                       | 36 |
| Ilustración 32 Usos de suelo según la EPA. Tomado de: (United States Environmental Protection Agency, 2015) |    |
| Ilustración 33 Diferentes usos de suelo                                                                     | 38 |
| Ilustración 34 N de Manning para superficies                                                                | 39 |
| Ilustración 35 Número de curva (Soil Conservation Service)                                                  | 40 |
| llustración 36 Números de curva, manual EPA SWMM.                                                           | 41 |
| Ilustración 37 N de Manning para conductos cerrados. Manual EPA SWMM                                        | 42 |
| llustración 38 Coeficiente de rugosidad n de Manning para conductos cerrados Tabla D.2.2 de la RAS          | 42 |
| Ilustración 39 Cuencas Norte                                                                                | 44 |
| Ilustración 40 Cuencas SUR                                                                                  | 45 |
| llustración 41 Centro de Cajicá                                                                             | 48 |
| Ilustración 42 Zonas viables para techos verdes                                                             | 48 |
| Illustración 43 Área viable nara navimentos nermeables                                                      | 50 |





# ÍNDICE DE GRÁFICAS

| Figura 1 Hidrograma de salida en la salida de la cuenca Noroccidental | 53 |
|-----------------------------------------------------------------------|----|
| Figura 2 Porcentajes de reducción cuenca noroccidental                | 54 |
| Figura 3 Hidrograma de salida en la salida de la cuenca Nororiental 1 | 54 |
| Figura 4 Porcentajes de reducción cuenca nororiental 1                | 55 |
| Figura 5 Hidrograma de salida en la salida de la cuenca Nororiental 2 | 55 |
| Figura 6 Porcentajes de reducción cuenca nororiental 2                | 56 |
| Figura 7 Hidrograma de salida en la salida de la cuenca Nororiental 3 | 56 |
| Figura 8 Porcentajes de reducción cuenca nororiental 3                | 57 |
| Figura 9 Hidrograma de salida en la salida de la cuenca Sur 1         | 57 |
| Figura 10 Porcentajes de reducción cuenca sur 1                       | 58 |
| Figura 11 Hidrograma de salida en la salida de la cuenca Sur 2        | 58 |
| Figura 12 Porcentajes de reducción cuenca sur 2                       | 59 |
| Figura 13 Hidrograma de salida en la salida de la cuenca Sur 3        | 59 |
| Figura 14 Porcentajes de reducción cuenca sur 3                       | 60 |
| Figura 15 Hidrograma de salida en la salida de la cuenca Sur 4        | 60 |
| Figura 16 Porcentajes de reducción cuenca sur 4                       | 61 |
| Figura 17 Hidrograma de salida en la salida de la cuenca Sur 5        | 61 |
| Figura 18 Porcentajes de reducción cuenca sur 5                       | 62 |
| Figura 19 Hidrograma de salida en la salida de la cuenca Sur PTAR     | 62 |
| Figura 20 Porcentaies de reducción cuenca sur PTAR                    | 63 |





# **ÍNDICE DE TABLAS**

| Tabla 1 Ciudades tropicales con alta intensidad de lluvias                                  |
|---------------------------------------------------------------------------------------------|
| Tabla 2 Método de los bloques alternos aplicado a la curva IDF de PR=100 años, en Cajicá 11 |
| Tabla 3 Escenarios de caso de estudio 3                                                     |
| Tabla 4 Episodios de lluvia para el caso de estudio de Jin'an                               |
| Tabla 5 Escenarios propuesto, caso de estudio Jin'an                                        |
| Tabla 6 Resultados UTOPIA                                                                   |
| Tabla 7 Resultados Cuencas SUR                                                              |
| Tabla 8 Propiedades de los diferentes techos verdes. Tomado de: (Bonilla, 2019)             |
| Tabla 9 Área de techos verdes en Cajicá                                                     |
| Tabla 10 Valores de los parámetros del modelo de pavimento permeable                        |
| Tabla 11 Área viable para PP                                                                |
| Tabla 12 Diseño de las tuberías de la cuenca Noroccidental                                  |
| Tabla 13 Diseños de la cuenca nororiental                                                   |
| Tabla 14 Diseños de la cuenca nororiental 2                                                 |
| Tabla 15 Diseños de la cuenca nororiental 3                                                 |
| Tabla 16 Diseños de la cuenca Sur1                                                          |
| Tabla 17 Diseños de la cuenca sur 2                                                         |
| Tabla 18 Diseños de la cuenca sur 3                                                         |
| Tabla 19 Diseños de la cuenca sur 4                                                         |
| Tabla 20 Diseños de la cuenca sur 5                                                         |
| Tahla 21 Diseños de la cuenca sur PTAR 91                                                   |





# 1 INTRODUCCIÓN

En los últimos años, la urbanización excesiva ha causado un aumento constante de superficies impermeables y ha alterado considerablemente las características hidrológicas de las cuencas, especialmente las urbanas. Estos cambios se traducen en altos volúmenes de escorrentía que, a su vez, trae numerosos impactos negativos. Los principales problemas de la generación de escorrentía son la degradación de las bases de los ríos, los riesgos que conlleva la inundación urbana y la contaminación del agua. En el trópico, a la creciente urbanización se le suman las fuertes lluvias que se presentan cada año. Los países tropicales son lugares que se caracterizan, entre otras cosas, por sus fuertes aguaceros. Un episodio de lluvia de gran intensidad, que ocurre en una ciudad altamente urbanizada, contribuye a la generación de grandes volúmenes de escorrentía que pueden generar afectaciones económicas considerables a la ciudad y presentan, además, riesgos importantes a las personas que viven en ella.

Es deber entonces de los encargados de la planeación de ciudades mitigar estos riesgos y prevenir estos desastres a través de una gestión adecuada de las aguas pluviales. Tradicionalmente, la escorrentía es manejada a través de sistemas de alcantarillado pluviales que se enfocan en rápidamente evacuar la escorrentía a través de la colección directa, detención, y descarga de estas aguas hacia cuerpos de agua naturales. Sin embargo, debido a el cambio climático y la fuerte urbanización, reforzar los sistemas ya existentes se ha vuelto costoso, especialmente para las ciudades altamente urbanizadas. En este contexto, los sistemas urbanos de drenaje sostenible (SUDS) surgen como una respuesta más acertada a la creciente demanda de manejo de aguas pluviales.

El siguiente documento pretende analizar las diferentes alternativas SUDS que pueden implementarse en parte del municipio de Cajicá, Colombia y evaluar cuales son las mejores SUDS para este. Este análisis se llevará a cabo a través del modelo SWMM (Stormwater Management Model) usando el software EPA SWMM, desarrollado por "The United States Environment Protection Agency". La modelación se llevará a cabo sobre la fase 3 del Plan Maestro de Alcantarillado de Cajicá, que cubre las zonas rurales potencialmente urbanas de Cajicá. Se analizará un escenario de este lugar totalmente urbanizado y se propondrá un diseño de alcantarillado de aguas pluviales desarrollado en UTOPIA, software desarrollado por el Centro de Investigaciones en Acueductos y Alcantarillados (CIACUA) de la Universidad de los Andes. El análisis consistirá en evaluar los caudales de salida y los volúmenes de escorrentía en 8 escenarios diferentes que surgirán de las diferentes combinaciones de tres estructuras SUDS: techos verdes, pavimentos permeables y zanjas de infiltración.





El documento empieza con el capítulo de marco teórico, introduciendo al lector todos los conceptos necesarios relacionados con la producción de escorrentía en ciudades y como frenarla. Se definen los conceptos de ciclo hidrológico, escorrentía, países tropicales, y se explica detalladamente que es la precipitación, su intensidad y como medirla. También se introducirán los análisis Intensidad-Duración-Frecuencia de las lluvias, y cómo representarlas a través de los hietogramas de diseño. Después se discutirán algunos ejemplos de estructuras SUDS. Luego, se mencionarán brevemente los resultados de algunos artículos que presentaron estudios similares usando EPA SWMM o otras aplicaciones con modelo SWMM, o bien, estudios que compararon el rendimiento de estructuras SUDS ya implementadas.

Una vez culminado el marco teórico, el capítulo de metodología describirá todos los procesos que involucran la generación del modelo en EPA SWMM y mostrará los diseños hechos en UTOPIA propuestos por el autor. Se describirá el área de estudio, sus condiciones climáticas, características geológicas, y las cuencas que la componen, con sus respectivos nodos de descarga.

Posteriormente, se mostrarán los resultados obtenidos para cada una de las 10 cuencas bajo los 8 escenarios posibles. Presentando así, los resultados del análisis de 80 modelos SWMM.

Por último, se analizarán los resultados y se concluirá que no existe una mejor estructura SUDS, sino más bien, una mejor combinación de diferentes estructuras que depende de las condiciones de cada zona.

## 1.1 Objetivos

#### 1.1.1 Objetivo General

Determinar las estructuras más apropiadas para los países tropicales con intensidades de lluvia altas.

## 1.1.2 Objetivos Específicos

- Analizar el valor que tiene hoy en día la sostenibilidad urbana. Comprender por qué es importante considerar este aspecto en la construcción de ciudades y específicamente, en el drenaje urbano
- Evaluar a través de registros históricos y casos de estudio la implementación, el funcionamiento y los beneficios de los SUDS.
- Realizar un modelo en EPA SWMM que permita el análisis comparativo entre estructuras SUDS que permita evidenciar que estructuras SUDS son mejores para un escenario de alta Iluvia.
- Diseñar la red correspondiente a la fase 3 del plan maestro de alcantarillado de Cajicá, a través del software Utopía.





# 2 MARCO TEÓRICO

## 2.1 Ciclo hidrológico

El agua, en sus tres fases (sólida, líquida y gaseosa), conforma la mayor parte del sistema climático en la tierra a través de diferentes elementos como el aire, las nubes, el océano, los lagos, las capas de nieve y los glaciares. Aproximadamente el 75% de la tierra está cubierta por agua o hielo. Del total del agua, el 97% se encuentra en los océanos, y el restante se reparte entre glaciales, hielos polares y nieve (2%), agua subterránea (0.6%), lagos de agua dulce (0.009%), lagos salados y mares interiores (0.0075%), humedad del suelo, ríos y agua atmosférica (0.01%).

El ciclo del agua es generalmente entendido como un ciclo circular simple que involucra la evaporación, condensación y precipitación. Sin embargo, la realidad es mucho más compleja. Aunque este simple modelo puede ser muy útil, los caminos que toma el agua en los diferentes ecosistemas de la tierra son extremadamente complejos. El ciclo que define en detalle cada uno de los procesos que sufre el agua se denomina ciclo hidrológico. El ciclo hidrológico puede "empezar" con el agua contenida en el océano, glaciales, ríos y demás cuerpos de agua. Esta agua se evapora y sube a la atmósfera, en donde, debido a las bajas temperaturas, se condensa y forma las nubes. Luego, el agua de las nubes se precipita regresando así a la tierra. Sin embargo, el agua puede ser interceptada por la vegetación, la cual puede retener considerables cantidades de agua para ser evaporada otra vez, sin pasar por la superficie. Una vez en la superficie, el agua puede escurrirse a los diferentes cuerpos de agua antes mencionados, o infiltrarse al suelo. El agua infiltrada puede escurrirse, al igual que sucede en la superficie o percolarse hacia los acuíferos. El agua contenida en acuíferos regresa a los cuerpos de agua a través del flujo subterráneo. Sin embargo, es posible que esta suba otra vez al suelo a través del ascenso capilar y en el suelo puede subir una vez más a la superficie debido a un proceso llamado difusión de vapor. Estos son solo algunos de los numerosos procesos que contiene el ciclo del agua. (National Oceanic and Atmospheric Administration (NOAA), 2020)

Ahora bien, los procesos antes mencionados pueden ocurrir en una zona natural o en una zona urbanizada. La diferencia entre estas zonas es la cantidad de agua que efectúa uno u otro proceso. En las zonas naturales, en donde ha habido poca intervención del hombre, el agua que se infiltra puede llegar a ser el 50% del agua que se precipita en la zona. Mientras tanto, en zonas altamente urbanizadas este porcentaje puede caer hasta un 15%, lo cual resulta en un incremento de la escorrentía generada, que puede ir del 10% en zonas naturales al 55% del agua precipitada en las zonas altamente urbanizadas. (Ruby)





## 2.2 Escorrentía

La escorrentía es el agua precipitada que fluye en la superficie terrestre y, como su nombre lo indica, escurre hacia el primer cuerpo de agua que encuentre en su camino, o bien se infiltra en el suelo. En las ciudades el agua debe ser controlada mediante sistemas de alcantarillado de aguas pluviales. Estos sistemas son redes enormes bajo el suelo de las ciudades que transportan el agua precipitada a través de tuberías hacia los denominados "nodos de descarga". Los nodos de descarga pueden tratarse o bien de cuerpos de agua o de salidas artificiales, como plantas de tratamiento de agua.

El exceso de escorrentía en la superficie puede generar varios problemas ambientales, sin mencionar, que puede generar inundaciones con considerables afectaciones económicas.

Los nodos de descarga presentan entonces, cada vez que hay precipitación, paso de agua. Cuando cae un aguacero en la ciudad, se produce lo que se denomina *picos de caudal*. Un pico de caudal es la mayor tasa de paso de agua, que suele medirse en el nodo de descarga.

#### 2.2.1 Problemas ambientales

Estas afectaciones ocurren principalmente por los grandes picos de caudal, que, directamente causan erosión y aumentan el transporte de sedimentos, lo cual, a su vez, produce obstrucción de canales y pérdida de la vegetación. La obstrucción de canales puede resultar en degradaciones considerables del hábitat acuático.

#### 2.2.2 Problemas en zonas urbanas

La dinámica meteorológica como la hidrológica son afectadas por el paisaje urbano. Por un lado, las propiedades térmicas artificiales y el aumento de partículas de las áreas urbanas impactan la forma en que se genera la lluvia y aumentan la precipitación a favor del viento y puede aumentar la generación de tormentas convectivas de verano. Por otro lado, la expansión del espacio urbano da como resultado un aumento del paisaje impermeable y expansión de redes artificiales de drenaje que pueden facilitar cambios dramáticos en la magnitud, las vías y el momento de la escorrentía en un rango de escalas, desde edificios individuales hasta desarrollos más grandes. El exceso de escorrentía en las ciudades puede provocar grandes inundaciones con grandes afectaciones económicas.







Ilustración 1 Inundaciones en Bogotá, Colombia. Tomado de (El Espectador, 2020)

# 2.3 Precipitación en países tropicales

Los países tropicales son los que se ubican en entre los trópicos: el trópico de Cáncer, el paralelo de latitud 23 Norte, y el trópico de Capricornio, el paralelo de latitud 23 Sur. Justo en el centro de la franja se dispone el ecuador, una línea imaginaria equidistante del polo norte y polo sur. Estos lugares se caracterizan, entre otros factores, porque el sol golpea perpendicularmente al mediodía, al menos un día al año. Debido a esto, esta franja presenta temperaturas más altas que en el resto del planeta, y de ahí el clima que se conoce como tropical. Adicionalmente, a este intenso calor se le atribuye la frecuencia de precipitaciones que se presentan en la zona, ya que el aire caliente retiene más humedad que el aire frío. (Richter, 2016).





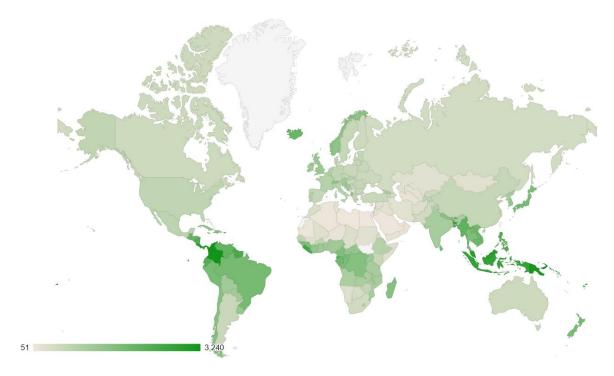



Ilustración 2 Precipitación por año por país Fuente: (Food and Agriculture Organization of the United Nations, 2014)

La imagen muestra en un verde más oscuro los países con mayor precipitación anual. Como se puede observar en la imagen, según la FOA, la mayor precipitación anual promedio ocurre en los países ubicados en el trópico. Además, según esta misma fuente, en 2014 Colombia llegó a ser el país más lluvioso del mundo.





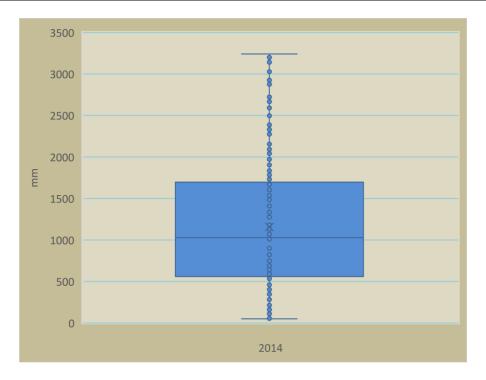



Ilustración 3 Precipitación media mundial (The World Bank Group, 2019)

Es usual medir la precipitación en milímetros de agua. Por ejemplo, puede decirse que en un evento de lluvia de 30 minutos se precipitaron 10 milímetros de agua. Esto quiere decir que, si se dejara un recipiente de cualquier medida en la intemperie desde el inicio hasta el final del evento de lluvia, se evidenciaría una columna de agua de 10 milímetros.

Generalmente, la precipitación se mide por año, para categorizar que tanto llueve en un país. La precipitación mundial promedio, según la FOA y el banco mundial es de aproximadamente 1200 milímetros por año, ubicándose Colombia en el punto más alejado de la media, con 3240 milímetros por año.

Así mismo, puede hablarse de la intensidad de lluvia. La intensidad de lluvia es la razón de incremento de la altura mencionada antes. Este incremento se mide en milímetros por hora. De manera que, el evento de lluvia mencionado antes tuvo una intensidad de 20 milímetros por hora, suponiendo que la cantidad de agua se haya precipitado de manera constante a esta intensidad. Sin embargo, en la mayoría de las veces, los episodios de lluvia no se presentan de manera constante. Al principio del episodio de lluvia se presenta una intensidad baja, que va incrementando hasta llegar a un pico para luego bajar otra vez. Así, un ejemplo del evento de lluvia mencionado antes se muestra a continuación:





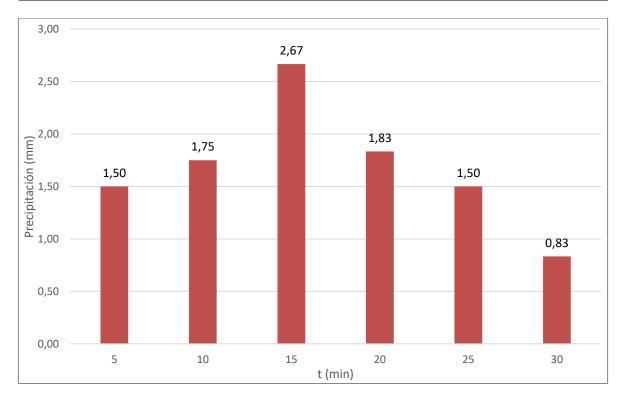



Ilustración 4 Hietograma de un aguacero de 30 minutos

Como se puede observar, el episodio de lluvia de 30 minutos se divide en intervalos de 5 minutos, y se evidencia la precipitación en cada uno de estos intervalos, las cuales, en total, alcanzan una precipitación de aproximadamente 10 milímetros. Puede verse, así, como varía la intensidad de un aguacero con el tiempo. Para este ejemplo, la intensidad en los primeros 5 minutos fue de aproximadamente 18 milímetros por hora, mientras que en los 5 minutos más intensos (generalmente el centro del aguacero), la intensidad corresponde a 32 milímetros por hora.

El gráfico anteriormente mostrado, que describe el comportamiento de un evento de lluvia, se le denomina "hietograma de lluvia".

La intensidad de precipitación se puede clasificar en suave (<2.5 mm/h), moderada (2.5-10 mm/h), fuerte (10-50 mm/h) y violenta (>50 mm/h). El último valor ocurre solamente en los trópicos debido los ciclones que se presentan ocasionalmente.

Ahora bien, estadísticamente, las tormentas (Iluvias con fuerte intensidad que pueden tener presencia de truenos) son características del clima tropical, y estas son las más propensas a generar escorrentía, por lo que en estos países se presenta una mayor amenaza de los problemas que esta conlleva, ya mencionados anteriormente.





Tabla 1 Ciudades tropicales con alta intensidad de lluvias

| Tropical                  |                   |  |  |  |  |
|---------------------------|-------------------|--|--|--|--|
| Ciudad o País             | Intensidad (mm/h) |  |  |  |  |
| Kuala Lumpur<br>(Malasia) | 240               |  |  |  |  |
| Singapur                  | 193.86            |  |  |  |  |
| Bangkok (Tailandia)       | 175               |  |  |  |  |
| Kuching (Malasia)         | 167               |  |  |  |  |
| Bogotá (Colombia)         | 115.71            |  |  |  |  |

Las ciudades tropicales presentan intensidades de lluvias mucho más altas que las ciudades no tropicales (Richter, 2016)

Hoy en día, la medición de los milímetros de lluvia se lleva a cabo por medio de pluviómetros ubicadas en las denominadas estaciones meteorológicas. En Colombia, El Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) es la entidad oficial gubernamental encargada del manejo de la información científica, hidrológica, meteorológica y todo lo relacionado con el medio ambiente.

## 2.3.1 Curvas Intensidad – Duración – Frecuencia (IDF)

Las curvas IDF de un lugar muestran las intensidades máximas a las que se llega en diferentes periodos de retorno, y en una duración predeterminada. Estas curvas son ampliamente utilizadas para describir la pluviosidad de una zona, ya que involucran un análisis estadístico de los episodios de lluvia que se han presentado en los últimos años en una zona. Un periodo de retorno es la frecuencia en la que se pueden presentar tales eventos. Por ejemplo, un periodo de retorno de 2 años indicaría que el evento se presenta cada dos años. Las curvas IDF se visualizan como sigue a continuación:





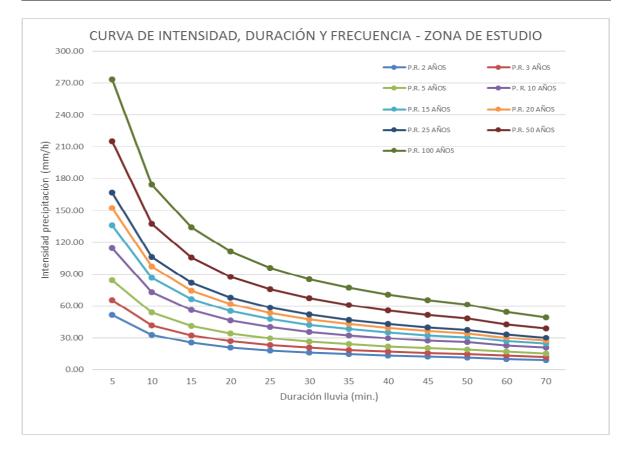



Ilustración 5 Curvas IDF Fuente: (Empresa de Servicios Públicos de Cajicá S.A. E.S.P. & INGEQMA, 2018)

Como podemos observar, se tienen diferentes curvas, una para cada periodo de retorno. La curva con mayor periodo de retorno (100 años) es la de mayor intensidad. Así, lo que muestran estas curvas son las intensidades máximas a las que se puede llegar jugando con las variables de duración y de periodo de retorno, por lo cual, una misma curva IDF representa eventos diferentes. Por ejemplo, según la imagen mostrada, para un periodo de retorno de 100 años, se puede encontrar un aguacero que dure solo 5 minutos y tenga una intensidad promedio de casi 300 milímetros por hora. Así mismo, en la misma curva se puede observar que el episodio más lluvioso que ocurre una vez en 100 años, con una duración de 10 minutos, tiene una intensidad de un poco más de 180 milímetros por hora. Las anteriores curvas presentadas están basadas en eventos reales, que son las correspondientes a la ciudad de Cajicá, según el estudio hidrológico liderado por la empresa INGEQMA, en un trabajo de consultoría del plan maestro de alcantarillado, fase 2.

La ventaja de las curvas IDF es que no se limitan a presentar un episodio de lluvia aislado, sino que recogen información estadística de varios años y combinan las peores tormentas que pueden generarse. Por esta razón, estas curvas se usan en el diseño del alcantarillado de las ciudades.





#### 2.3.2 Método de los bloques alternos

Ahora bien, aunque las curvas IDF son las necesarias para el diseño de los alcantarillados, es más común usar esta información traducida en un hietograma. El método de los bloques alternos es uno de los métodos que permite traducir una curva IDF en un hietograma de diseño. A continuación se muestra el proceso a seguir, según lo describe Ven Te Chow, en su libro "Applied Hydrology"

- 1. Dividir el tiempo de duración en intervalos
- 2. Seleccionar el periodo de retorno
- 3. Obtener de su curva IDF los valores de intensidad de precipitación para cada intervalo
- 4. Calcular la profundidad o volumen de precipitación caída en cada intervalo, multiplicando la intensidad por la duración del intervalo (en horas)
- 5. Restar los valores sucesivos de profundidad de precipitación (en mm) calculados antes
- 6. Reordenar los resultados de manera que el mayor valor esté en medio de la serie, y se vayan alternando en orden descendente alternativamente a lado y lado de ese máximo

El proceso anteriormente descrito se ilustra en la tabla 2, tomando como ejemplo la curva IDF de Cajicá, con un periodo de retorno de 100 años:

Tabla 2 Método de los bloques alternos aplicado a la curva IDF de PR=100 años, en Cajicá

| Duración | Intensidad<br>(mm/h) | Profundidad<br>acumulada (mm) | Profundidad<br>incremental<br>(mm) | Precipitación<br>(mm) |
|----------|----------------------|-------------------------------|------------------------------------|-----------------------|
| 0:05     | 293.607              | 24.47                         | 24.47                              | 1.66                  |
| 0:10     | 187.11               | 31.19                         | 6.72                               | 1.86                  |
| 0:15     | 143.76               | 35.94                         | 4.75                               | 2.13                  |
| 0:20     | 119.242              | 39.75                         | 3.81                               | 2.54                  |
| 0:25     | 103.142              | 42.98                         | 3.23                               | 3.23                  |
| 0:30     | 91.615               | 45.81                         | 2.83                               | 4.75                  |
| 0:35     | 82.881               | 48.35                         | 2.54                               | 24.47                 |
| 0:40     | 75.99                | 50.66                         | 2.31                               | 6.72                  |
| 0:45     | 70.39                | 52.79                         | 2.13                               | 3.81                  |
| 0:50     | 65.731               | 54.78                         | 1.98                               | 2.83                  |
| 0:55     | 61.782               | 56.63                         | 1.86                               | 2.31                  |
| 1:00     | 58.385               | 58.39                         | 1.75                               | 1.98                  |
| 1:05     | 55.425               | 60.04                         | 1.66                               | 1.75                  |
| 1:10     | 52.818               | 61.62                         | 1.58                               | 1.58                  |





De esta manera, el área sombreada de la tabla anterior, junto con las duraciones de la primera columna, correspondería al hietograma de diseño de Cajicá.

## 2.4 Prácticas de drenaje sostenible

Los sistemas urbanos de drenaje sostenible (SUDS) pretenden minimizar el impacto que genera una urbanización hacia la cuenca a la cual pertenece. En otras palabras, intentan que la respuesta hidrológica de una zona sea similar a la que tenía antes de ser urbanizada, y por consiguiente, disminuir la escorrentía y los altos picos de caudal que se presentan en nodos de descarga de estas urbanizaciones. Actualmente, las diferentes técnicas y estructuras SUDS están aplicadas en muchos países del mundo. En Reino Unido, por ejemplo, los sistemas de drenaje urbano sostenible están ampliamente establecidos. También se pueden encontrar en países como Australia, Estados Unidos, Dinamarca, Alemania y Suecia.

Los SUDS pueden dividirse en dos grandes grupos: estructurales y no estructurales. Los SUDS no estructurales corresponden a capacitaciones, cursos y enseñanzas que puedan crear una cultura en torno al uso del agua y del suelo. Por otro lado, los SUDS estructurales corresponden a estructuras físicas que se implementan en las ciudades. El análisis que se realizará se enfocará en estas últimas. Las estructuras SUDS también pueden categorizarse según su funcionamiento. Existen entonces, dos principales funciones: infiltración o filtración, y detención y retención. Las estructuras que cumplen la función de filtración permiten que el agua precipitada pueda infiltrarse al suelo bajo la urbanización, sin generar escorrentía ni aumentar los caudales de salida. Por otro lado, las estructuras que cumplen la función de retener interceptan el agua de la precipitación, y la retienen por un tiempo considerable. Esto permite que el agua retenida pueda evaporarse antes de entrar en el sistema de alcantarillado de una ciudad, o bien, infiltrarse en el sistema de alcantarillado cuando ya no esté saturado.

A continuación, se muestran algunos ejemplos de las estructuras SUDS:

#### 2.4.1.1 Techos verdes

Los techos verdes son los techos de un edificio que está parcial o totalmente cubierto de vegetación, ya sea en suelo o en un medio de cultivo apropiado, con una membrana impermeable. Puede incluir otras capas que sirven para drenaje e irrigación y como barrera para las raíces.







Ilustración 6 Edificio BTS en Bogotá, techo verde instalado. Fuente: (Groncol, 2020)

## 2.4.1.2 Zanjas de infiltración

Las zanjas de infiltración son canales sin desnivel construidos en laderas, los cuales tienen por objetivo captar el agua que escurre, disminuyendo los procesos erosivos, al aumentar la infiltración del agua en el suelo. Estas obras de recuperación de suelos pueden ser construidas de forma manual o mecanizada, y se sitúan en la parte superior o media de una ladera, para capturar y almacenar la escorrentía proveniente de las cotas superiores. (Roberto Pizarro Tapia, 2004)



Ilustración 7 Humedales en el centro empresarial Elemento, Bogotá





#### **2.4.1.3** *Estangues*

Un estanque es una pequeña cavidad de agua, natural o artificial, utilizado cotidianamente para proveer al riego, criar peces, nadar, etcétera, o con fines meramente ornamentales. Los estanques en ciudades son grandes estructuras que permiten captar hasta el 100% del agua que se precipita, siendo entonces una de las mejores estructuras SUDS. Sin embargo, se necesita mucho espacio y no puede utilizarse el área en donde esté implementado.



Ilustración 8 Parque Simón Bolívar (Instituto Distrital de Recreación y Deporte, 2017)

#### 2.4.1.4 Pavimentos permeables

Los pavimentos permeables generalmente están hechos de una matriz de concretos bloques que incluyen huecos llenos de arena, grava o tierra. Estos vacíos permitir que la escorrentía se infiltre a través del pavimento en el suelo subyacente, mitigar el impacto de la escorrentía y recargar las aguas subterráneas. Debido a que el polvo o las partículas emitidas por los automóviles pueden reducir permeabilidad en el tiempo, es adecuado instalar pavimento permeable en espacios como estacionamientos, entradas de vehículos y andenes, donde el volumen es bajo y la gestión del mantenimiento es fácil.







Ilustración 9 Pavimento Permeable (United States Environmental Protection Agency, 2015)

#### 2.5 Casos de estudio

Este capítulo tiene como fin discutir brevemente algunos de los resultados de varios proyectos en donde se compararon diferentes estructuras SUDS en países con frecuencias altas de lluvia o bajo episodios violentos que se hayan presentado

## 2.5.1 Proyecto AQUAVAL, Valencia, España.

Este proyecto fue discutido a través del artículo "SuDS Efficiency during the Start-Up Period under Mediterranean Climatic Conditions", publicado en la revista Clean Soil Water, en 2013. (Sara Perales-Momparler, 2013)

#### 2.5.1.1 Área de estudio

En el estudio llevado a cabo en el artículo, se discuten 2 estructuras SUDS (franjas de infiltración y techos verdes), ubicadas en 3 lugares diferentes:

• Franja de infiltración alrededor de un complejo deportivo





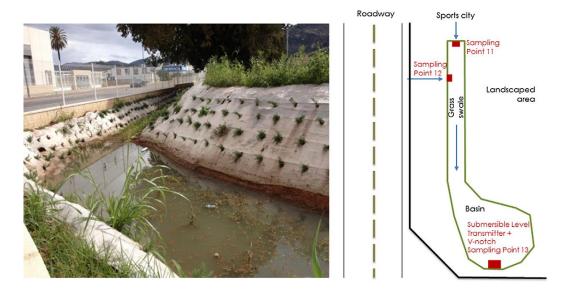



Ilustración 10 Franja de infiltración del lugar 1

Esta puede albergar hasta 170 m³ de agua, recibiendo escorrentía de la carretera y un complejo deportivo situado a un costado de esta (1900 m² + 11.100 m², respectivamente)

Franja de infiltración a un costado de una carretera de alto volumen



Ilustración 11 Franja de infiltración del lugar 2

Puede albergar hasta 218 m³ y recibe escorrentía proveniente de 7.000 m² de carreteras públicas y privadas.

• Techos verdes en la escuela pública Gonzales Vera





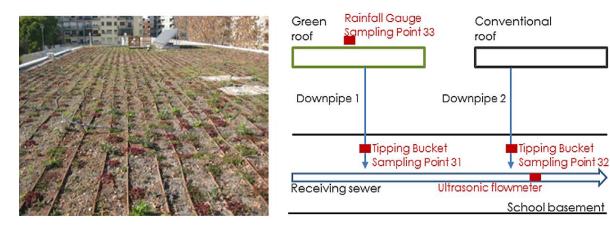



Ilustración 12 Techo verde del lugar 3

La escuela pública de Gonzales Vera, localizada en el corazón de la ciudad de Xàtiva, fue escogida como lugar 3. En la zona se instalaron un total de 218 m² de techos verdes nuevos, con un grosor de 10 centímetros.

#### 2.5.1.2 Resultados

El monitoreo comenzó a fines de septiembre de 2012 con la mayor cantidad de evento torrencial registrado durante el otoño de y fue el primer período significativo de lluvia después de La construcción de la SuDS. Esto significó que el período de inicio comenzó con condiciones de lluvia intensa relativamente extremas: 92 mm en tres días. Otros 8 episodios de luvia fueron grabados durante el monitoreo. Los resultados de cada uno de los episodios y el rendimiento de los SUDS instalados pueden observarse a continuación:

|       |                           | 1                        | 1                       | 1                               | 2                        | 2                       | 2                               | 3                        | 3                       | 3                            |
|-------|---------------------------|--------------------------|-------------------------|---------------------------------|--------------------------|-------------------------|---------------------------------|--------------------------|-------------------------|------------------------------|
| Event | Rainfall<br>depth<br>(mm) | Runoff<br>volume<br>(m³) | Spill<br>volume<br>(m³) | Volumetric<br>efficiency<br>(%) | Runoff<br>volume<br>(m³) | Spill<br>volume<br>(m³) | Volumetric<br>efficiency<br>(%) | Runoff<br>volume<br>(m³) | Spill<br>volume<br>(m³) | Volumetric<br>efficiency (%) |
| 1     | 92.0                      | 909.0                    | 195.7                   | 78                              | 598.9                    | 114.9                   | 81                              | 20.1                     | -                       | -                            |
| 2     | 35.4                      | 349.8                    | 54.1                    | 85                              | 230.5                    | 33.4                    | 86                              | 7.7                      | _                       | -                            |
| 3     | 23.8                      | 235.1                    | 0.0                     | 100                             | 154.9                    | 0.0                     | 100                             | 5.2                      | -                       | -                            |
| 4     | 5.4                       | 53.4                     | 0.0                     | 100                             | 35.2                     | 0.0                     | 100                             | 1.2                      | _                       | -                            |
| 5     | 5.4                       | 53.4                     | 0.0                     | 100                             | 35.2                     | 0.0                     | 100                             | 1.2                      | _                       | _                            |
| 6     | 119.6                     | 1181.6                   | 433.8                   | 63                              | 778.6                    | 131.7                   | 83                              | 26.1                     | _                       | _                            |
| 7     | 8.0                       | 79.0                     | 0.0                     | 100                             | 52.1                     | 17.9                    | 66                              | 1.7                      | _                       | _                            |
| 8     | 9.4                       | 92.9                     | 0.0                     | 100                             | 61.2                     | 0.0                     | 100                             | 2.0                      | 1.0                     | 52                           |
| 9     | 4.6                       | 45.4                     | 0.0                     | 100                             | 29.9                     | 0.0                     | 100                             | 1.0                      | 0.3                     | 73                           |

Ilustración 13 Resultados de las estructuras SUDS (Sara Perales-Momparler, 2013)

Los lugares 1 y 2 se refieren a las zanjas de infiltración, y el lugar 3 los techos verdes. *Runoff volume* se refiere al volumen de escorrentía presentada y *Spill volume* se refiere a el volumen de esta escorrentía que no pudo contenerse en la estructura SUDS.





En los 2 casos de franjas de infiltración se logra reducir en un 60% mínimo la escorrentía de la zona. En la mayoría de los casos estas estructuras reducen e 100% del agua precipitada.

Por otro lado, los techos verdes presentan eficiencias parciales en lluvias pequeñas (del 53% al 73%9. Este artículo nos proporciona un primer acercamiento a la capacidad que tienen los SUDS para reducir la escorrentía. Sin embargo, se debe aclarar que las lluvias presentadas acá son relativamente pequeñas con las presentadas en los trópicos, por lo cual, los SUDS tienen mayor eficiencia que en la mayoría de los casos. Además, en este proyecto no hubo control de la escorrentía que podría haberse captado por le terreno, sin necesidad de implementar SUDS.

#### 2.5.2 Technische Universitat Dresden Campus

En el campus de esta universidad alemana, se realizó un análisis de elevación de la zona, de impermeabilidad y, junto con el drenaje existente, se implementaron 3 tipos de estructuras SUDS:

- 1. Barriles de lluvia (rain barrels)
- 2. Zanjas de infiltración (infiltrativo trenches)
- 3. Pavimentos permeables

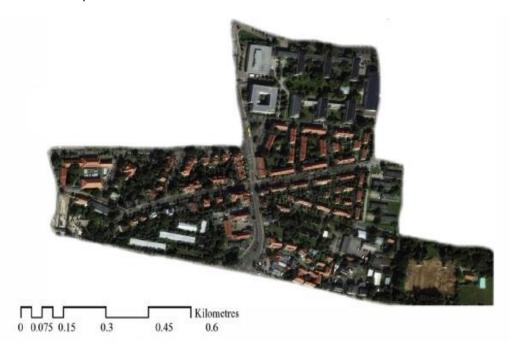



Ilustración 14 Campus de la universidad alemana Technische Universitat Dresden. Tomado de: (Wenyu Yang, 2020)

El análisis se llevó a cabo utilizando el "Environmental Protection Agency Storm Water Management Model (EPA SWMM)". Como un modelo dinámico de lluvia-escorrentía, el modelo SWMM ha sido continuamente desarrollado para la adopción de planeo, análisis y diseño de los





sistemas de drenaje urbano desde 1971. Durante los últimos años, el modelo SWMM ha sido ampliamente utilizado para simulaciones hidrológicas para corto y mediano plazo por estudiantes e ingenieros hidráulicos. Los resultados generados por este modelo son modelos prácticos y sistemáticos que logran analizar la cantidad de escorrentía generada de las cuencas hidrológicas que se esté trabajando. Adicionalmente, SWMM es el modelo que se escogió para el caso de estudio del presente documento.

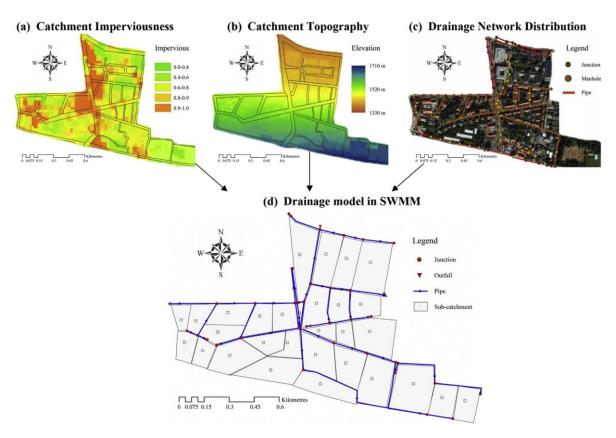



Ilustración 15 Modelo de EPA SWMM para el caso de estudio 2

Siete escenarios fueron analizados con EPA SWMM, a través del artículo "Mesuren performance of low impact development practices for the surface runoff management".

- Un escenario por cada una de las estructuras SUDS mencionadas anteriormente, (barriles de Iluvia, franjas de infiltración y pavimentos permeables)
- Un escenario por cada combinación de dos de estas,
- Uno correspondiente a la combinación de las 3.

A continuación, los resultados del anterior análisis:





| LID practice    | Runoff volume removal rate |        |        |        |            |            |  |  |
|-----------------|----------------------------|--------|--------|--------|------------|------------|--|--|
|                 | 3 Mon <sup>a</sup>         | 6 Mon  | 12 Mon | 60 Mon | 120<br>Mon | 180<br>Mon |  |  |
| IT              | 14.93%                     | 18.60% | 17.92% | 16.48% | 15.96%     | 16.36%     |  |  |
| PP              | 12.93%                     | 16.16% | 15.51% | 14.20% | 13.75%     | 14.10%     |  |  |
| RB              | 14.30%                     | 17.85% | 17.14% | 15.74% | 15.25%     | 15.64%     |  |  |
| IT + PP         | 19.86%                     | 23.73% | 23.01% | 21.51% | 20.97%     | 21.40%     |  |  |
| IT + RB         | 21.61%                     | 25.68% | 24.87% | 23.30% | 22.76%     | 23.23%     |  |  |
| PP + RB         | 18.23%                     | 21.98% | 21.24% | 19.77% | 19.26%     | 19.68%     |  |  |
| IT + PP +<br>RB | 23.24%                     | 27.42% | 26.64% | 25.04% | 24.46%     | 24.94%     |  |  |

Ilustración 16 Resultados caso de estudio 2

En este artículo analizan, a través de estos 7 escenarios el desempeño de los SUDS y la relación costo y beneficio que estos tienen.

El análisis de costo-efectividad se realizó para analizar el desempeño económico-técnico de las prácticas de LID. Los resultados sugieren que el RB era la opción LID más rentable con un rango de relación c/b de 0.32–0.41 y PP tuvo la relación c/b más alta que varió de 4.79 a 5.99. En cuanto a las combinaciones de LID, la combinación de IT-PP-RB con un rango de relación c/b de 3.88–4.58 no fue el mejor técnicamente económico, a pesar de que presentó la tasa de eliminación más alta.

En cuanto a eficiencia, las franjas de infiltración tienen el mejor desempeño individual. Mientras que los pavimentos porosos, el menor. Según los hietogramas de diseño, la combinación de las tres estructuras puede llegar a reducir un 27.42% del volumen de escorrentía.

#### 2.5.3 Cuenca de Hexi, en la ciudad de Nanjing, China

China es un país subtropical en donde a menudo ocurren fuertes lluvias que causan afectaciones catastróficas. La razón por la cual China es tan afectado es por la gran densidad poblacional de sus inmensas urbes. En China, las grandes ciudades suelen tener poca área permeable, por lo cual las inundaciones representan grandes amenazas. En este estudio se realiza un análisis a partir de un modelo computacional hidrológico con el fin de evaluar las oportunidades de implementación de SUDS en la ciudad de Nanjing, China.





## 2.5.3.1 Área de estudio




Ilustración 17 Área de estudio de Hexi, Nanjing, China. Tomado de: (Maochuan Hu, 2017)

## Se conforma por:

- 40.4% residencia de alta densidad
- 22% tierra libre
- 16.5% residencia baja densidad
- 16.5% carretera
- 3.7% áreas verdes (85% de infiltración)

El evento de lluvia se caracteriza porque anualmente, llueve 1060 mm en la zona de estudio, en promedio y el máximo aguacero registrado de 1951 a 2014 en la estación meteorológica de Nanjing ocurrió en Julio 4 de 2003, el cual fue usado para esta investigación. Tuvo una profundidad de 207.2 milímetros.

#### 2.5.3.2 Estructuras SUDS

En este estudio usaron 2 estructuras SUDS: sistemas de captación de agua (Rainwater harvesting) y pavimentos porosos, lo cuales se clasificaron de la siguiente manera. Los sistemas de captación de agua se clasificaron según su presencia por unidad de área de techo. Es decir, cuánto ocupa el





sistema de captación de agua en proporción al área que ocupan los techos de la zona. Esta unidad podía ser de 0.0267 o de 0.0785 metros cuadrados por cada metro de techo disponible (que en adelante se denominó 26.7 y 78.5 milímetros, respectivamente). Mientras tanto, los pavimentos porosos se clasificaron según el porcentaje de vías que ocuparon (50% o 75%). De esta manera, se analizaron 7 escenarios como sigue a continuación:

Tabla 3 Escenarios de caso de estudio 3

| Escenarios | RH   | PP  |
|------------|------|-----|
| 1          | 26.7 | -   |
| 2          | 78.5 | -   |
| 3          | -    | 50% |
| 4          | -    | 75% |
| 5          | 26.7 | 50% |
| 6          | 78.5 | 50% |
| 7          | 78.5 | 75% |

Adicionalmente, se clasificaron diferentes subáreas en función del nivel de riesgo que presentaban (bajo, medio o alto). Este nivel de riesgo fue determinado por la cantidad de urbanización y por la presencia de cuerpos de agua que presentaban.

#### 2.5.3.3 Resultados y discusión

El análisis de reducción de escorrentía que cada uno de estos escenarios realizó, se llevó a cabo midiendo la reducción que estas estructuras provocaban en el caudal de salida. Los resultados son los siguientes:





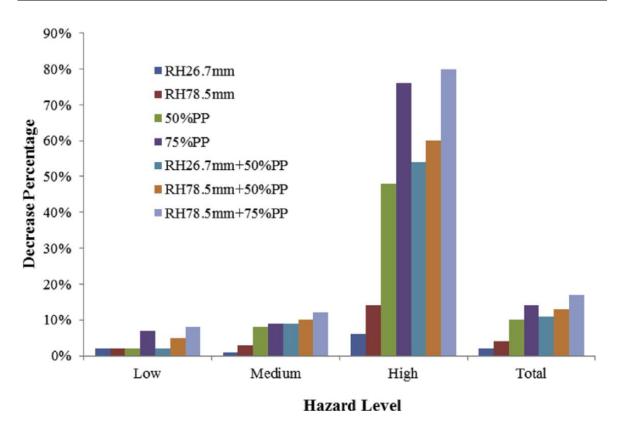



Ilustración 18 Resultados caso de la cuenca de Neri

Se pueden observar las grandes reducciones que se lograron en las áreas altamente urbanizadas, con unas amenazas importantes.

Se comentó que la implementación de prácticas LID (equivalente a SUDS) puede, hasta cierto punto, mitigar inundaciones y sus riesgos. El escenario de RH78.5 mm / 75%PP escenario fue el más eficiente para reducir las áreas de inundación. Los pavimentos permeables funcionaron mucho mejor que el sistema de captación de agua, para reducir los riesgos de inundación. Se sabe que un problema de estas estructuras son los altos costos del mantenimiento de estos, sin embargo, en el estudio se menciona que el potencial para la reconstrucción de pavimentos permeables en cuencas urbanas es grande. En este artículo, se recomienda la implementación de pavimentos permeables en no más del 75% en calles no muy transitadas.

#### 2.5.4 Ciudad de Seúl, Corea del sur

Según las estadísticas de daños importantes atribuibles a desastres naturales en Corea durante la última década (2006–2015), las cantidades más altas de daños han sido causados por lluvias (63%) y tifones (30%). Este artículo considera que, en vez de lidiar con los costos de reparación, sale más provechoso enfrentarse a las inundaciones con los costos que generaría implementar un manejo





de las aguas pluviales exitoso, como, por ejemplo, la implementación de SUDS. De esta manera, este estudio analiza diferentes prácticas SUDS en la capital de Corea del Sur, Seúl.

#### 2.5.4.1 Área de estudio

Para este caso se eligieron 2 lugares diferentes dentro de la ciudad, con las siguientes características:

#### Sitio 1:

- Típica urbanización de alta densidad.
- Más del 80% del área es impermeable
- Casi 200 ha

#### Sitio 2:

- Típica área comercial
- Más del 85% del área es impermeable
- Casi 200 ha

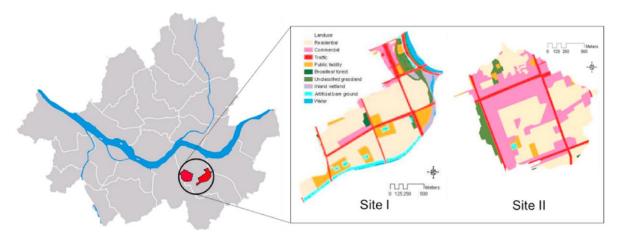



Ilustración 19 Lugares de estudio en Seúl, Corea del Sur (Chaeyoung Bae, Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area, 2020)

El mayor evento de lluvia registrado, con el que se realizó el análisis a través de un modelo de SWMM, ocurrió en 2010, de gran intensidad (71mm/h), pero de poca cantidad en general.

En este estudio se refirieron brevemente a las estructuras SUDS a analizar, las cuales incluían techos verdes y pavimentos permeables.





#### 2.5.4.2 Resultados

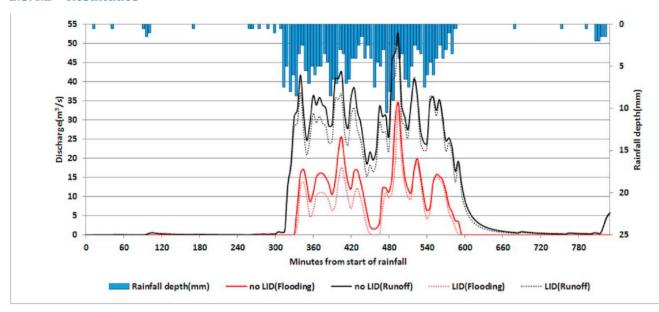



Ilustración 20 Resultados caso de estudio de Seúl, Corea del Sur

En la imagen anterior se combinan tres diagramas diferentes. La precipitación caída (de color azul en la parte de arriba con sus unidades correspondientes en el lado derecho), el caudal de escorrentía (de color negro, visualizado en la parte de abajo con sus unidades al costado izquierdo) y el caudal de inundación (de color rojo, con sus unidades al costado izquierdo). Las líneas punteadas corresponden a los caudales que se presentaron después de la implementación de los SUDS. Se puede observar entonces otro caso de éxito que logran las estructuras SUDS.

## 2.5.5 Jardín de infiltración en la ciudad de Xi'an, China

#### 2.5.5.1 Área de estudio

En la ciudad de Xi'an, en el centro de China, se realizó un estudio para evaluar el efecto que tenía un pequeño jardín de infiltración en los picos de caudal y la escorrentía de la zona. (S. Tang, 2016)





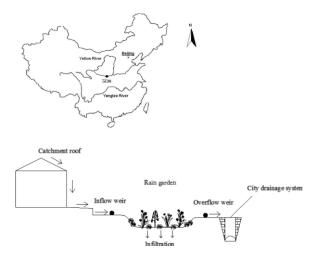



Ilustración 21 Área de estudio



Ilustración 22 Jardín de infiltración del caso 5

El jardín de infiltración tenía las siguientes características:

Superficie: 30 m<sup>2</sup>

Profundidad: 15 cm

Recibe escorrentía de los techos aledaños con un área total de 604,7m<sup>2</sup>

## 2.5.5.2 Resultados

Los resultados se midieron en diferentes periodos: mayo, junio y julio del 2013 y julio del 2014. Así, los resultados obtenidos se presentan en las siguientes gráficas:





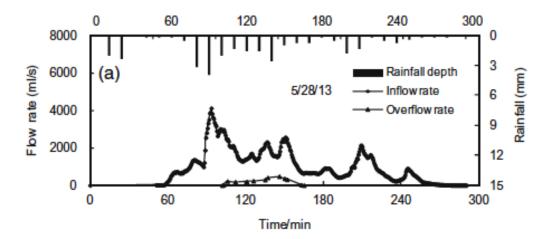



Ilustración 23 Resultados caso de estudio 5 (mayo, 2013)

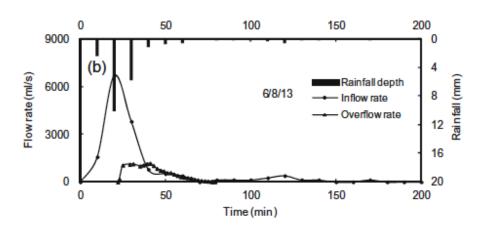



Ilustración 24 Resultados caso de estudio 5 (junio, 2013)

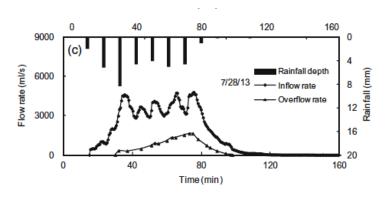



Ilustración 25 Resultados caso de estudio 5 (julio, 2013)





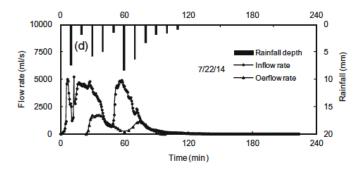



Ilustración 26 Resultados caso de estudio 5 (julio, 2014)

Se puede observar que, para mayo, junio y julio del 2013, se tuvo un 93.8%, 77.6%, 77.8% de reducción de volumen de escorrentía, respectivamente, mientras que para julio de 2014 se obtuvo un 76.6% de reducción.

Algunas conclusiones importantes con respecto a los jardines de lluvia discutidas en este estudio son:

- De las 28 tormentas observadas durante el estudio de cuatro años, el jardín de lluvia se desbordó solo en cinco eventos. Las tasas de retención de escorrentía para estos eventos de desbordamiento oscilaron entre 0.80 y 0.94.
- Las contribuciones a la retención de flujo del almacenamiento y la infiltración en el jardín de lluvia difirieron con las tormentas de diferente intensidad, y la infiltración jugó un papel más importante durante las pequeñas tormentas.
- La capacidad del jardín de lluvia experimental no se vio afectada por la obstrucción del suelo en los años de estudio.
- El patrón de uso de la tierra y los cambios de tormenta mostraron que los jardines de lluvia pueden actuar como hidrológicos efectivos Para lograr el efecto previsto, los jardines de lluvia tienen que colocarse adecuadamente para recoger la escorrentía de tormenta.

## 2.5.6 Distrito de Jin'an, Ciudad Fuzhou, Sureste de China

#### 2.5.6.1 Área de estudio

El área de estudio corresponde a un distrito de la ciudad de Fuzhou, China, en este se instalaron franjas de infiltración, pavimentos porosos, y techos verdes (Zheng Peng, 2018).





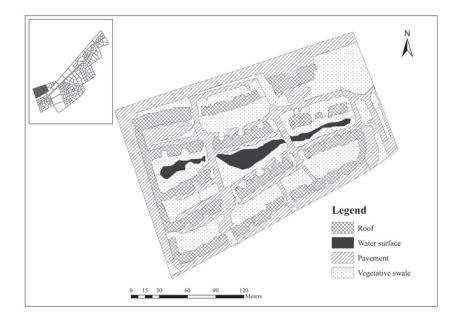



Ilustración 27 Área de estudio, caso Jin'an

Esta área, además, posee las siguientes características:

- Ciudad de alta densidad con una precipitación anual de 2100 mm y una intensidad alta que puede llegar a los 70 mm/h.
- La urbanización ha crecido considerablemente.
- El suelo estaba compuesto por techos (21.55%), carreteras (43.08%), cuerpos de agua (4.08%) y Vegetación (31.28%).

Es importante resaltar, que cuando la precipitación alcanza los 37 mm de profundidad, se evidencian inundaciones.

El análisis se llevó a cabo con el modelo PCSWMM, un software desarrollado por "Canada Computational Hydraulics International (CHI)", basado en el software EPA SWMM.

El episodio de lluvia usado se originó a través de un análisis estadístico de los episodios de lluvia que se presentaban en la zona, para un episodio de una duración de 2 horas:

Tabla 4 Episodios de Iluvia para el caso de estudio de Jin'an

| Periodos de retorno (años) | Precipitación<br>(mm) | Intensidad<br>(mm/h) |
|----------------------------|-----------------------|----------------------|
| 0,5                        | 37,6                  | 18,8                 |
| 1                          | 49,85                 | 24,92                |





| 2   | 62,09  | 31,05 |
|-----|--------|-------|
| 5   | 78,28  | 39,14 |
| 10  | 90,53  | 45,26 |
| 20  | 102,72 | 51,36 |
| 50  | 118,96 | 59,48 |
| 100 | 131,21 | 65,61 |

Los escenarios propuestos para las diferentes estructuras de manejo mencionadas anteriormente se disponen a continuación:

Tabla 5 Escenarios propuesto, caso de estudio Jin'an

| Á          | Área de la estructura de manejo (m²) |      |      |  |  |  |
|------------|--------------------------------------|------|------|--|--|--|
| Escenarios | PP                                   | FI   | TV   |  |  |  |
| 1          | 1.9                                  | -    | -    |  |  |  |
| 2          | -                                    | 1.23 | -    |  |  |  |
| 3          | -                                    | -    | 0.95 |  |  |  |
| 1-2        | 1.9                                  | 1.23 | -    |  |  |  |
| 1-3        | 1.9                                  | -    | 0.95 |  |  |  |
| 2-3        | -                                    | 1.23 | 0.95 |  |  |  |
| 1-2-3      | 1.9                                  | 1.23 | 0.95 |  |  |  |





#### 2.5.6.2 Resultados

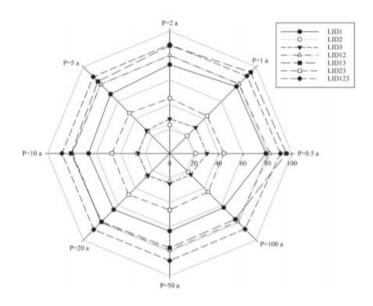



Ilustración 28 Resultados caso de estudio Jin'an

Los 7 escenarios son más efectivos en el control de inundaciones durante lluvias con periodos de retorno más pequeños (menos intensidad) y aguaceros de mayor duración. El pavimento permeable es la mejor medida de LID, y la mejor combinación de estas es el pavimento permeable – franja de infiltración – techo verde (todos), que llegaron a reducir casi el 100% de la escorrentía en el periodo de retorno de 0,5 años





# 3 METODOLOGÍA

Con el objetivo de evaluar la reducción en el riesgo de inundación urbana al implementar sistemas de drenaje urbano sostenible se tomará como caso de estudio el Plan Maestro de la Fase III del sistema de alcantarillado del municipio de Cajicá (P.M.A.). Se seleccionó el municipio de Cajicá debido a la accesibilidad de la información hidrológica y del sistema de alcantarillado y por el interés en conocer las implicaciones hidrológicas del continuo crecimiento urbano en la zona, que en su mayoría es rural. Asimismo, se hará uso del software EPA SWMM dado que, permite implementar sistemas de control LID (low impact development, versión en inglés de SUDS) y conocer si la capacidad del sistema es suficiente para que no ocurran inundaciones. Los sistemas de control LID que se evaluarán son:

- Techos verdes,
- Pavimentos permeables
- Zanjas infiltrantes

Adicionalmente a esto, se diseñarán las tuberías de las cuencas a analizar a través del software UTOPIA, un programa desarrollado por el Centro de Investigaciones en Acueductos y Alcantarillados (CIACUA) de la Universidad de los Andes.

# 3.1 Caso de estudio: Cajicá

Cajicá es un municipio ubicado en Cundinamarca con una extensión de 53 km² y una elevación promedio de 2588 m.s.n.m. Hace parte de La Sabana de Bogotá y se encuentra 39km al norte de la ciudad de Bogotá. Limita al norte con Zipaquirá, al oeste con Tabio, al Este con Sopó y al Sur con Chía (Alcaldía Municipal de Cajicá, s.f.). En cuanto a la hidrografía, Cajicá hace parte de la cuenca alta del río Bogotá y es atravesado por el río Frío y el río Bogotá.





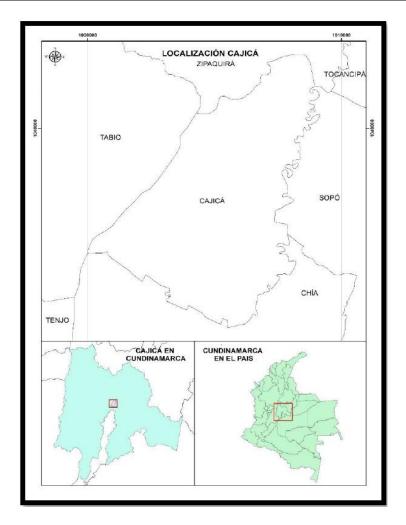



Ilustración 29 Localización del municipio de Cajicá

Cajicá ha venido presentando un crecimiento exponencial de población en los últimos años. Por su cercanía con Bogotá, una urbe de 8 millones de habitantes, se estima que Cajicá siga aumentando su crecimiento poblacional, en los años venideros. Al igual que su población, el municipio también ha aumentado su zona urbana, y por consiguiente la impermeabilidad de su cuenca. Estos factores ocasionan que el sistema de alcantarillado, que compartía las aguas negras con las aguas pluviales, se sobrecargue presurizando las tuberías y generando daños al sistema y escorrentía en las calles. Por lo anterior, en 2010, se propuso el Plan Maestro de Alcantarillado de Cajicá. Este proceso, tiene como fin principal separar las aguas negras y pluviales en sistemas de evacuación diferentes.

El plan maestro está dividido en 3 fases. Hoy en día, la fase 1 se completó y la fase 2 se encuentra en proceso, mientras que la fase 3 está prevista por realizarse en 10 años. El presente documento pretende analizar los efectos de las estructuras SUDS en la inexistente red pluvial de la fase 3, así





como diseñar de manera preliminar el sistema de alcantarillado de aguas lluvias de esta, para un escenario futuro en que esta zona esté totalmente urbanizada.

#### 3.2 Fase 3 del P.M.A.

La fase 3 del plan maestro de alcantarillado corresponde a la zona menos urbanizada del municipio. Sin embargo, cabe aclarar que el presente análisis no tiene en cuenta esto. Como se ha dicho anteriormente, se pretende diseñar las tuberías de evacuación de aguas lluvias de la zona, por lo tanto, para diseñar la red de manera correcta se supone un escenario futuro, en donde toda la zona esté altamente urbanizada.

### 3.3 Modelo EPA SWMM

El Storm Water Management Model (Modelo de aguas pluviales) es una aplicación gestionada por la U.S. Environmental Protection Agency (EPA) y respaldada técnicamente por la Universidad de Oregón, capaz de reproducir los fenómenos de escorrentía urbana y combinar fenómenos asociados a aguas residuales. Es capaz de generar un modelo dinámico de lluvia-escorrentía, que ha sido continuamente desarrollado para la adopción de planeo, análisis y diseño de los sistemas de drenaje urbano desde 1971. Durante los últimos años, el modelo SWMM ha sido ampliamente utilizado para simulaciones hidrológicas para corto y mediano plazo por estudiantes e ingenieros hidráulicos. Los resultados generados por este modelo son modelos prácticos y sistemáticos que logran analizar la cantidad de escorrentía generada de las cuencas hidrológicas que se esté trabajando.

Para generar el modelo a usar se necesitarán una serie de parámetros de entrada, mencionados a continuación.

#### 3.3.1 Trazado de la red, cuencas, nodos y tuberías

Debido a que el trazado de la red es inexistente, el trazado seguirá el mismo recorrido que el alcantarillado sanitario existente. De esta manera, se supondrá que los pozos de la red de aguas lluvias se ubicarán en los mismos lugares que los pozos de aguas negras, o a un lado de estos, con las mismas elevaciones superficiales, sin embargo, no necesariamente con las mismas cotas de fondo. La información del sistema de alcantarillado de aguas negras fue transmitida por Empresas Públicas de Cajicá (EPC Cajicá). Así mismo, el trazado de tuberías será similar. Se propondrán nuevas salidas que desembocarán principalmente en los dos ríos que rodean el municipio: el río Frío, y el río Bogotá. Debido a que son aguas lluvias, estas no llevan grandes cargas de contaminantes a los ríos, comparado con las aguas negras. Por último, las cuencas se dibujaron a partir de imágenes satelitales con meticulosidad, para simular cada parcela existente en la zona. De esta manera, el trazado, junto con las salidas correspondientes se muestra a continuación:





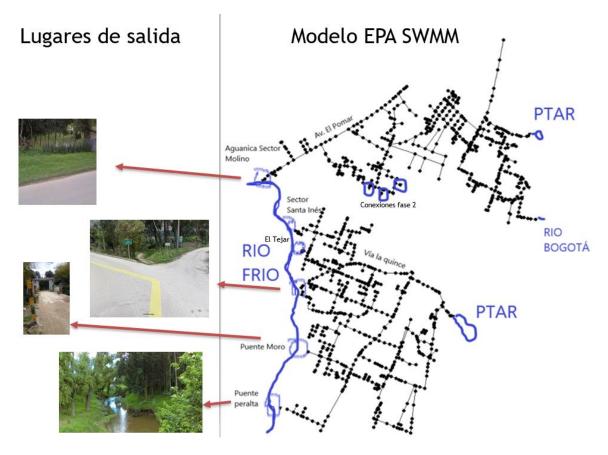



Ilustración 30 Trazado de la red en la Fase 3 del P.M.A. Cajicá

Puede observarse que el trazado se divide en 2 partes (zona norte y zona sur), ya que la porción que las separa en el centro corresponde a la zona más urbanizada y que se evaluó en la fase 2 del P.M.A.

Existen, por lo tanto, 10 salidas diferentes, con lo cual, se hablará de 10 cuencas diferentes, 4 en el norte y 6 en el Sur. Más adelante se mostrará cómo están configuradas con más detalle.

## 3.3.2 Hietograma de diseño

Un hietograma es la distribución temporal de la intensidad o de la profundidad de una precipitación a lo largo de la duración del episodio tormentoso.

Como se ha habló en el capítulo 2.3, el hietograma de diseño representa un episodio de tormenta generado a partir de las curvas IDF de una zona. A partir de las curvas IDF de Cajicá, ya mencionadas anteriormente, se construyó el hietograma de diseño que se usará en el presente modelo:





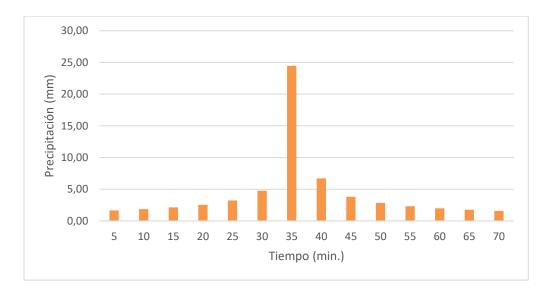



Ilustración 31 Hietograma de análisis

## 3.3.3 Subcuencas hidrológicas

En inglés "Subctachments", son los elementos trazados que representan cada parcela del terreno. La modelación de cada subcuenca conlleva un proceso en que se definen varios factores:

- **Nodo de salida**: depende de la elevación y configuración de la zona. Este proceso se realiza manualmente para cada subcuenca.
- Usos del suelo: El uso del suelo se clasifica en A, B, C y D. Estos dependen del nivel de infiltración que tienen según su conformación. El suelo de Cajicá está conformado por depósitos de terraza alta, los cuales están compuestos por suelos finos, arenas y gravas (Suelo tipo B)





| Tipo | Descripción                                                                                                                                                                                                                                                                                                                                                            | K (mm/h)    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A    | Bajo potencial de escorrentía. Suelos con una alta tasa de infiltración incluso cuando están completamente mojados.  Consisten principalmente en arenas y gravas con drenaje profundo entre bueno y excesivo.                                                                                                                                                          | ≥ 11        |
| В    | Suelos con tasa de infiltración media cuando están completamente mojados. Consisten principalmente en suelos con drenaje profundo a moderado y textura de grano mediano. Ejemplos: marga arenosa o <i>loss</i> poco profundo.                                                                                                                                          | 3,75 – 7,5  |
| С    | Suelos con tasa de infiltración baja cuando están completamente<br>mojados. Consisten principalmente en suelos con una capa que<br>impide el flujo de agua hacia abajo, o suelos con textura de grano<br>fino. Ejemplos: marga arcillosa o marga arenosa poco profunda.                                                                                                | 1,25 – 3,75 |
| D    | Alto potencial de escorrentía. Suelos con tasa de infiltración muy baja cuando están completamente mojados. Consisten principalmente en suelos arcillosos con un alto potencial de expansión, con un nivel freático permanentemente alto, con cubierte de arcilla en o cerca de la superficie y suelos poco profundos con una capa impermeable cerca de la superficie. | ≤ 1,25      |

Ilustración 32 Usos de suelo según la EPA. Tomado de: (United States Environmental Protection Agency, 2015)

 Porcentaje de impermeabilidad: este porcentaje está dado por el uso que se le da a cada cuenca (manual de EPA SWMM). Sin embargo, debido a que analizaremos un escenario totalmente urbanizado, todas las cuencas tendrán el mismo porcentaje de impermeabilidad de 65%.





| Descripción del U             | so del Suelo                                             |
|-------------------------------|----------------------------------------------------------|
| Tierra cultivada              |                                                          |
| Sin tratamiento d             | de conservación                                          |
| Con tratamiento               | de conservación                                          |
| Pastos y prados               |                                                          |
| En malas condic               | iones                                                    |
| En buenas condi               | iciones                                                  |
| Pradera                       |                                                          |
| En buenas condi               | iciones                                                  |
| Terreno boscoso               |                                                          |
|                               | ierta forestal pobre o inexistente                       |
| Buena cubierta f              | orestal <sup>3</sup>                                     |
| •                             | résped, parques, campos de golf,                         |
| cementerios, etc.)            |                                                          |
|                               | iciones (75% o más de hierba)                            |
| En pobres condi               | iciones (50-75% de hierba)                               |
| Zonas comerciales (           | 85% impermeable)                                         |
| Polígonos industrial          | es (72% impermeable)                                     |
| Zona residencial <sup>4</sup> | 100                                                      |
|                               | a parcela <sup>5</sup> (% Impermeabilidad <sup>6</sup> ) |
| < 500 m <sup>2</sup> (65%)    |                                                          |
| 1000 m <sup>2</sup> (38%)     |                                                          |
| 1500 m <sup>2</sup> (30%)     |                                                          |
| 2000 m <sup>2</sup> (25%)     |                                                          |
| 4000 m <sup>2</sup> (20%)     |                                                          |
|                               | mentados, tejados, caminos                               |
| asfaltados, etc. 7            |                                                          |
| Calles y carreteras           |                                                          |
|                               | on cunetas y colectores de drenaje                       |
| Caminos de grav               | ra                                                       |
| Sucios                        |                                                          |

Ilustración 33 Diferentes usos de suelo

Aunque el valor máximo es de 85% para las zonas comerciales, se decide escoger el mayor entre zonas residenciales debido a que no se espera que existan zonas comerciales en toda la zona. Así, el valor de impermeabilidad de las cuencas es 65%.

- **Pendiente de la cuenca**: Se escoge un valor predeterminado que también concuerda con lo modelado en la fase 2, 0.5%.
- Anchura característica del flujo: Una estimación inicial de la anchura media de la cuenca se puede calcular dividiendo el área total entre la máxima longitud de esta. Así, la anchura de flujo corresponde a la división entre el área de la cuenca y la longitud que existe entre el nodo de salida de la cuenca y el vértice de la cuenca más alejado de este (United States Environmental Protection Agency, 2015). Utilizando este método, para cada cuenca se determinaron las coordenadas de cada vértice (con ayuda de Microsoft Excel), y la coordenada del nodo de salida para definir la anchura de cada cuenca.





 Manning: Un n de Manning se le asigna a las zonas impermeables y zonas no permeables, a través de la siguiente tabla del manual de EPA SWMM se pueden extraer los datos necesarios:

| Superficie                               | n     |
|------------------------------------------|-------|
| Asfalto liso                             | 0,011 |
| Hormigón liso                            | 0,012 |
| Revestimiento de hormigón basto          | 0,013 |
| Madera pulida                            | 0,014 |
| Ladrillo con mortero de cemento          | 0,014 |
| Arcilla vitrificada                      | 0,015 |
| Fundición de hierro                      | 0,015 |
| Tuberías de metal corrugado              | 0,024 |
| Superficie de escombrera                 | 0,024 |
| Terreno improductivo (libre de residuos) | 0,05  |
| Terreno cultivado                        |       |
| Cubierta de residuos < 20%               | 0,06  |
| Cubierta de residuos > 20%               | 0,17  |
| Pasto natural                            | 0,13  |
| Hierba                                   |       |
| Corta, pradera                           | 0,15  |
| Densa                                    | 0,24  |
| Hierba <i>Bermuda</i>                    | 0,41  |
| Bosque                                   |       |
| Con cubierta ligera de arbustos          | 0,40  |
| Con cubierta dense de arbustos           | 0,80  |

Ilustración 34 N de Manning para superficies

Se determinó que las zonas permeables de Cajicá eran pasto natural (0.13) y las zonas no permeables eran generalmente asfalto liso (0.011).

• Almacenamiento: el almacenamiento permeable e impermeable se extrae a partir del análisis de depresiones en el terreno. Desafortunadamente, no se dispone de esta información para la fase 3 de Cajicá. Sin embargo, analizando los terrenos usados para el modelo de la fase 2 de Cajicá, se encontró que los valores oscilan entre 3.71 y 3.81 milímetros en la zona permeable y 0 en todos los casos, en la zona impermeable. Por esta razón, se le asigna un valor promedio de 3.76 milímetros a la zona permeable de todas las subcuencas de la zona, y de 0 para las zonas impermeables.





 Método de infiltración: el método de infiltración escogido es el Número de Curva desarrollado por el Servicio de Conservación de Suelos (SCS) de Estados Unidos debido a que considera el tipo de suelo, el uso de suelo y las condiciones previas de humedad

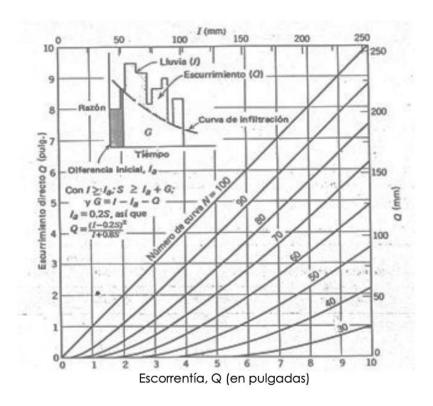



Ilustración 35 Número de curva (Soil Conservation Service)

De esta ilustración, podemos observar que:

$$Q = \frac{(I - 0.2 * S)^2}{I + 0.8 * S}$$

$$S = \frac{25.400}{N} - 254$$

Y que, cuando N (el número de curva) tiende a 100, Q (la escorrentía) tiende a infinito. Paralelamente, cuando N tiende a 0, la escorrentía Q tiende a 0.

$$N \rightarrow 100, \ S \rightarrow 0, \ Q \rightarrow I$$

$$N \to 0$$
,  $S \to \infty$ ,  $Q \to 0$ 

Para el modelo de infiltración de necesitan los siguientes parámetros





- Número
- Tiempo de secado
- Conductividad

La conductividad y el tiempo de secado no tienen mayores afectaciones al modelo actual, por lo cual, se dejan de manera predeterminada. El número de curva se extrae de la siguiente tabla:

| _                                                                                                       | Tipo de Suelos |    |    |     |
|---------------------------------------------------------------------------------------------------------|----------------|----|----|-----|
| Descripción del Uso del Suelo                                                                           | A              | В  | С  | D   |
| Tierra cultivada                                                                                        |                |    |    |     |
| Sin tratamiento de conservación                                                                         | 72             | 81 | 88 | 91  |
| Con tratamiento de conservación                                                                         | 62             | 71 | 78 | 81  |
| Pastos y prados                                                                                         |                |    |    |     |
| En malas condiciones                                                                                    | 68             | 79 | 86 | 89  |
| En buenas condiciones                                                                                   | 39             | 61 | 74 | 80  |
| Pradera                                                                                                 |                |    |    |     |
| En buenas condiciones                                                                                   | 30             | 58 | 71 | 78  |
| Terreno boscoso                                                                                         |                |    |    |     |
| Poco denso, cubierta forestal pobre o inexistente                                                       | 45             | 66 | 77 | 83  |
| Buena cubierta forestal <sup>3</sup>                                                                    | 25             | 55 | 70 | 77  |
| Espacios abiertos (césped, parques, campos de golf, cementerios, etc.)                                  |                |    |    |     |
| En buenas condiciones (75% o más de hierba)                                                             | 39             | 61 | 74 | 80  |
| En pobres condiciones (50-75% de hierba)                                                                | 49             | 69 | 79 | 84  |
| Zonas comerciales (85% impermeable)                                                                     | 89             | 92 | 94 | 95  |
| Polígonos industriales (72% impermeable)                                                                | 81             | 88 | 91 | 93  |
| Zona residencial <sup>4</sup> Tamaño medio de la parcela <sup>5</sup> (% Impermeabilidad <sup>6</sup> ) | 7              | 7  |    | - V |
| < 500 m <sup>2</sup> (65%)                                                                              | 77             | 85 | 90 | 92  |
| 1000 m² (38%)                                                                                           | 61             | 75 | 83 | 87  |
| 1500 m <sup>2</sup> (30%)                                                                               | 57             | 72 | 81 | 86  |
| 2000 m² (25%)                                                                                           | 54             | 70 | 80 | 85  |
| 4000 m <sup>2</sup> (20%)                                                                               | 51             | 68 | 79 | 84  |
| Aparcamientos pavimentados, tejados, caminos asfaltados, etc. <sup>7</sup>                              | 98             | 98 | 98 | 98  |
| Calles y carreteras                                                                                     |                |    |    |     |
| Pavimentados, con cunetas y colectores de drenaje                                                       | 98             | 98 | 98 | 98  |
| Caminos de grava                                                                                        | 76             | 85 | 89 | 91  |
| Sucios                                                                                                  | 72             | 82 | 87 | 89  |

Ilustración 36 Números de curva, manual EPA SWMM.

Debido a que el suelo de Cajicá es B, el número de curva a usar es 85 (para parcelas menores de 500 m²)

#### 3.3.4 Tuberías

#### 3.3.4.1 Material de la tubería

En general las tuberías son prefabricadas mediante procesos industriales perfectamente establecidos. Éstas pueden ser de los siguientes materiales: arcilla vitrificada (gres), concreto simple, concreto reforzado, asbesto cemento, hierro fundido, hierro dúctil, PVC, polietileno, polietileno de alta densidad, plástico reforzado con fibra de vidrio, resina termoestable reforzada





(fibra de vidrio), mortero plástico reforzado y acero(Título D de la RAS 2000) (Ministerio de Desarrollo Económico., 2000)

| Material del conducto                                                                                      | n                                               |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Fibrocemento                                                                                               | 0,011 - 0,015                                   |
| Ladrillo                                                                                                   | 0,013 - 0,017                                   |
| Fundición con revestimiento de cemento y junta recubierta                                                  | 0,011 - 0,015                                   |
| Hormigón (en bloques):<br>Acabado liso<br>Acabado basto                                                    | 0,012 – 0,014<br>0,015 – 0,017                  |
| Hormigón (tubo)                                                                                            | 0,011 - 0,015                                   |
| Metal corrugado (½"×2½")  Sin revestimiento interior  Solera recubierta  Revestido de asfalto centrifugado | 0,022 - 0,026<br>0,018 - 0,022<br>0,011 - 0,015 |
| Tubería de plástico liso                                                                                   | 0,011 - 0,015                                   |
| Cerámica vitrificada (gres) tubería de gres revestimiento por placas                                       | 0,011 - 0,015<br>0,013 - 0,017                  |

Ilustración 37 N de Manning para conductos cerrados. Manual EPA SWMM

| Valores del coeficiente de rugosidad de Maning       |               |  |  |  |  |
|------------------------------------------------------|---------------|--|--|--|--|
| Material                                             | n             |  |  |  |  |
| CONDUCTOS CERRADOS                                   |               |  |  |  |  |
| Asbesto – cemento                                    | 0.011 - 0.015 |  |  |  |  |
| Concreto prefabricado interior liso                  | 0.011 - 0.015 |  |  |  |  |
| Concreto prefabricado interior rugoso                | 0.015 - 0.017 |  |  |  |  |
| Concreto fundido en sitio, formas lisas              | 0,012 - 0,015 |  |  |  |  |
| Concreto fundido en sitio, formas rugosas            | 0,015 - 0,017 |  |  |  |  |
| Gres vitrificado                                     | 0.011 - 0.015 |  |  |  |  |
| Hierro dúctil revestido interiormente con cemento    | 0.011 - 0.015 |  |  |  |  |
| PVC, polietileno y fibra de vidrio con interior liso | 0.010 - 0.015 |  |  |  |  |
| Metal corrugado                                      | 0.022 - 0.026 |  |  |  |  |
| Colectores de ladrillo                               | 0.013 - 0.017 |  |  |  |  |
| CONDUCTOS ABIERTOS                                   |               |  |  |  |  |
| Canal revestido en ladrillo                          | 0.012 - 0.018 |  |  |  |  |
| Canal revestido en concreto                          | 0.011 - 0.020 |  |  |  |  |
| Canal excavado                                       | 0.018 - 0.050 |  |  |  |  |
| Canal revestido rip-rap                              | 0.020 - 0.035 |  |  |  |  |

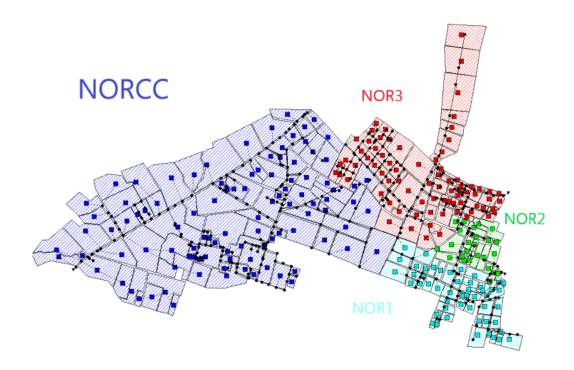
Ilustración 38 Coeficiente de rugosidad n de Manning para conductos cerrados Tabla D.2.2 de la RAS

Se determinó que el material a usar era PVC, por lo cual el n de Manning elegido es 0.010.





#### 3.3.4.2 **Diseños**


Para el diseño de las tuberías, se usó el software UTOPIA, desarrollado por el centro de investigaciones en acueductos y alcantarillados — CIACUA. Es un software que permite el diseño optimizado de las redes de distribución de agua. Para el presente modelo se tuvieron en cuenta las siguientes consideraciones:

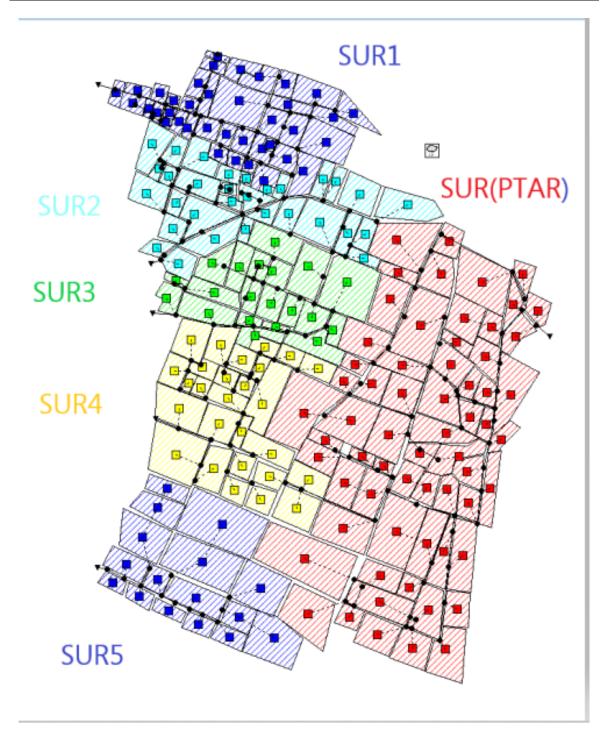
- La excavación mínima de los pozos (y, por lo tanto, altura mínima) es de 1,2 metros.
- Lista de diámetros a usar es una oferta en PVC para saneamiento de ciudades, teniendo en cuenta que 0.25 es el mínimo permitido por la norma RAS 2000: (0.25, 0.3, 0.35, 0.38, 0.4, 0.45, 0.5, 0.53, 0.6, 0.7, 0.8, 0.9, 1, 1.05, 1.2, 1.35, 1.4, 1.5, 1.6, 1.8, 2.0). (todas las unidades en metros).
- La relación de llenado máxima, sin embargo, si el diámetro de una tubería es menor a 0.6 metros, la relación baja a 0.7 metros y si el número de Froude de una tubería está entre 0.7 y 1.5 (flujo crítico), se usa una relación de llenado máxima de 0.8.
- Para el cálculo de la velocidad se usa la ecuación de Manning, con un n de Manning de 0.10 (PVC)

Al presente documento se adjunta, en la sección de anexos las tablas que ilustran, para cada cuenca, el resultado de los diseños de este proceso y las propiedades del flujo máximo que puede transitar por cada tubería. Así mismo, se muestra a continuación un mapa de las cuencas que se diseñaron junto con los valores de caudal, relación de llenado, diámetro, área, Froude, batea inicial, batea final, excavación inicial y excavación final en la tubería de salida de cada una de las cuencas:








**Ilustración 39 Cuencas Norte** 

**Tabla 6 Resultados UTOPIA** 

|          |                             | Noroccidental | Nororiental 1 | Nororiental 2 | Nororiental<br>3 |
|----------|-----------------------------|---------------|---------------|---------------|------------------|
|          | # Pozos                     | 85            | 27            | 21            | 73               |
|          | # Tuberías                  | 84            | 26            | 20            | 72               |
|          | Cota nodo inicial (m)       | 2589.00       | 2569.04       | 2571.86       | 2574.30          |
| <u>a</u> | Cota Nodo final (m)         | 2588.80       | 2568.80       | 2571.76       | 2574.00          |
| salida   | Diámetro (m)                | 1.35          | 0.60          | 0.45          | 0.90             |
| de s     | Caudal diseño (m3/s)        | 4.38          | 0.72          | 0.42          | 2.28             |
|          | Relación de llenado         | 0.70          | 0.69          | 0.68          | 0.78             |
| tubería  | Longitud (m)                | 42.26         | 201.97        | 65.80         | 50.80            |
| tβ       | Área (m2)                   | 1.07          | 0.21          | 0.11          | 0.54             |
| en       | Froude                      | 1.41          | 1.83          | 2.22          | 1.59             |
| les l    | Batea inicial (m)           | 2569.10       | 2567.24       | 2569.66       | 2570.50          |
| Valores  | Batea final (m)             | 2568.90       | 2565.40       | 2568.76       | 2570.10          |
| >        | Excavación nodo inicial (m) | 19.90         | 1.80          | 2.20          | 3.80             |
|          | Excavación nodo final (m)   | 19.90         | 3.40          | 3.00          | 3.90             |







**Ilustración 40 Cuencas SUR** 





**Tabla 7 Resultados Cuencas SUR** 

| # Pozos 30 31 21 25 13 60  # Tuberías 29 30 20 24 12 59  Nodo inicial N2 N1 N1 N1 n50 n1785  Nodo final 55 56 57 58 59 510  Cota nodo inicial (m) 2581.9 2579.9 2579.1 2579.2 2578.1 2578.9  Cota Nodo final (m) 2581.9 2579.8 2578.8 2579.0 2577.6 2571.8  Diámetro (m) 0.80 0.50 0.90 0.45 0.80 1.40  Caudal diseño (m³/s) 1.15 0.20 1.01 0.20 0.71 3.67  Relación de llenado 0.76 0.65 0.79 0.68 0.74 0.77  Longitud (m) 104.1 52.6 149.2 147.6 65.7 100.2  Área (m²) 0.41 0.14 0.54 0.12 0.40 1.27  Velocidad (m/s) 2.81 1.51 1.88 1.70 1.78 2.88  Froude 1.16 0.91 0.70 1.03 0.75 0.89  Batea final (m) 2574.4 2572.5 2575.9 2573.9 2574.4 2567.1  Batea final (m) 2574.0 2572.3 2575.6 2573.3 2574.3 2566.9  Excavación nodo final (m) 7.90 7.50 3.20 5.70 3.30 4.90  Excavación máxima 7.9 7.8 4 5.7 3.7 4.9 |        |                             |            | Т      | Т      | Т      | Т      | 1       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------|------------|--------|--------|--------|--------|---------|
| # Tuberías   29   30   20   24   12   59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                             | SUR1       | SUR2   | SUR3   | SUR4   | SUR5   | SURPTAR |
| Nodo inicial   N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | # Pozos                     | 30         | 31     | 21     | 25     | 13     | 60      |
| Nodo final   S5   S6   S7   S8   S9   S10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | # Tuberías                  | 29         | 30     | 20     | 24     | 12     | 59      |
| Cota nodo inicial (m) 2581.9 2579.9 2579.1 2579.2 2578.1 2578.9   Cota Nodo final (m) 2581.9 2579.8 2578.8 2579.0 2577.6 2571.8   Diámetro (m) 0.80 0.50 0.90 0.45 0.80 1.40   Caudal diseño (m³/s) 1.15 0.20 1.01 0.20 0.71 3.67   Relación de llenado 0.76 0.65 0.79 0.68 0.74 0.77   Longitud (m) 104.1 52.6 149.2 147.6 65.7 100.2   Área (m²) 0.41 0.14 0.54 0.12 0.40 1.27   Velocidad (m/s) 2.81 1.51 1.88 1.70 1.78 2.88   Froude 1.16 0.91 0.70 1.03 0.75 0.89   Batea inicial (m) 2574.4 2572.5 2575.9 2573.9 2574.4 2567.1   Batea final (m) 2574.0 2572.3 2575.6 2573.3 2574.3 2566.9   Excavación nodo inicial (m) 7.90 7.50 3.20 5.70 3.30 4.90                                                                                                                                                       |        | Nodo inicial                | N2         | N1     | N1     | N1     | n50    | n1785   |
| Cota Nodo final (m)   2581.9   2579.8   2578.8   2579.0   2577.6   2571.8     Diámetro (m)   0.80   0.50   0.90   0.45   0.80   1.40     Caudal diseño (m³/s)   1.15   0.20   1.01   0.20   0.71   3.67     Relación de llenado   0.76   0.65   0.79   0.68   0.74   0.77     Longitud (m)   104.1   52.6   149.2   147.6   65.7   100.2     Área (m²)   0.41   0.14   0.54   0.12   0.40   1.27     Velocidad (m/s)   2.81   1.51   1.88   1.70   1.78   2.88     Froude   1.16   0.91   0.70   1.03   0.75   0.89     Batea inicial (m)   2574.4   2572.5   2575.9   2573.9   2574.4   2567.1     Batea final (m)   2574.0   2572.3   2575.6   2573.3   2574.3   2566.9     Excavación nodo inicial (m)   7.90   7.50   3.20   5.70   3.30   4.90                                                                 |        | Nodo final                  | <b>S</b> 5 | S6     | S7     | S8     | S9     | S10     |
| Diámetro (m)   0.80   0.50   0.90   0.45   0.80   1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Cota nodo inicial (m)       | 2581.9     | 2579.9 | 2579.1 | 2579.2 | 2578.1 | 2578.9  |
| Caudal diseño (m³/s)  Relación de llenado  0.76  0.65  0.79  0.68  0.74  0.77  Longitud (m)  104.1  52.6  149.2  147.6  65.7  100.2  Área (m²)  Velocidad (m/s)  2.81  1.51  1.88  1.70  1.78  2.88  Froude  1.16  0.91  0.70  1.03  0.75  0.89  Batea inicial (m)  2574.4  2572.5  2575.9  2573.9  2574.4  2567.1  Batea final (m)  7.50  7.40  3.20  5.70  3.30  4.90                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Cota Nodo final (m)         | 2581.9     | 2579.8 | 2578.8 | 2579.0 | 2577.6 | 2571.8  |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     |        | Diámetro (m)                | 0.80       | 0.50   | 0.90   | 0.45   | 0.80   | 1.40    |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | ılida  | Caudal diseño (m³/s)        | 1.15       | 0.20   | 1.01   | 0.20   | 0.71   | 3.67    |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | le sa  | Relación de llenado         | 0.76       | 0.65   | 0.79   | 0.68   | 0.74   | 0.77    |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | iría ( | Longitud (m)                | 104.1      | 52.6   | 149.2  | 147.6  | 65.7   | 100.2   |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | tube   | Área (m²)                   | 0.41       | 0.14   | 0.54   | 0.12   | 0.40   | 1.27    |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | s en   | Velocidad (m/s)             | 2.81       | 1.51   | 1.88   | 1.70   | 1.78   | 2.88    |
| Batea inicial (m)       2574.4       2572.5       2575.9       2573.9       2574.4       2567.1         Batea final (m)       2574.0       2572.3       2575.6       2573.3       2574.3       2566.9         Excavación nodo inicial (m)       7.50       7.40       3.20       5.30       3.70       2.20         Excavación nodo final (m)       7.90       7.50       3.20       5.70       3.30       4.90                                                                                                                                                                                                                                                                                                                                                                                                     | alore  | Froude                      | 1.16       | 0.91   | 0.70   | 1.03   | 0.75   | 0.89    |
| Excavación nodo inicial (m)         7.50         7.40         3.20         5.30         3.70         2.20           Excavación nodo final (m)         7.90         7.50         3.20         5.70         3.30         4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >      | Batea inicial (m)           | 2574.4     | 2572.5 | 2575.9 | 2573.9 | 2574.4 | 2567.1  |
| Excavación nodo final (m) 7.90 7.50 3.20 5.70 3.30 4.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Batea final (m)             | 2574.0     | 2572.3 | 2575.6 | 2573.3 | 2574.3 | 2566.9  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Excavación nodo inicial (m) | 7.50       | 7.40   | 3.20   | 5.30   | 3.70   | 2.20    |
| Excavación máxima 7.9 7.8 4 5.7 3.7 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | Excavación nodo final (m)   | 7.90       | 7.50   | 3.20   | 5.70   | 3.30   | 4.90    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | Excavación máxima           | 7.9        | 7.8    | 4      | 5.7    | 3.7    | 4.9     |

# 3.4 Análisis por realizar

En los casos de estudio investigados, se hace una comparación de diferentes estructuras SUDS. Las estructuras que más se encuentran en estos estudios corresponden a los techos verdes (casi en todos los casos de estudio se menciona esta estructura). Adicionalmente, se menciona en gran medida los pavimentos permeables y ya se ha discutido su eficiencia en estos estudios.





Adicionalmente, debido a las condiciones de Cajicá, que proyecta ser una ciudad altamente urbanizada en los años venideros, se eligieron 3 estructuras SUDS:

- 1. Sistemas usados en el trabajo de Luisa Bonilla que evalúa la fase 2 de Cajicá (combinaciones de diferentes techos verdes)
- 2. Pavimentos permeables
- 3. Franjas de infiltración

## 3.4.1 SUDS escogido: Techo verde (TV)

El techo verde elegido para el presente proyecto fue el resultado más exitoso que obtuvo Luisa Bonilla en su proyecto de grado (Bonilla, 2019), que evalúa un análisis similar en la fase 2 del P.M.A de Cajicá:

Tabla 8 Propiedades de los diferentes techos verdes. Tomado de: (Bonilla, 2019)

| Estrato    | Propiedad                                | TV 3    |
|------------|------------------------------------------|---------|
|            | Altura berma (mm)                        | 2       |
| Superficie | Vegetación (fracción volumen)            | 0.2     |
| Superficie | Superficie                               | 0.41    |
|            | Pendiente (%)                            | 30      |
|            | Espesor (mm)                             | 152.4   |
|            | Porosidad (fracción volumen)             | 0.501   |
|            | Capacidad (fracción volumen)             | 0.284   |
| Suelo      | Punto de marchitez (fracción<br>volumen) | 0.135   |
|            | Conductividad (mm/h)                     | 6.604   |
|            | Conductividad pendiente                  | 60      |
|            | Cabeza de succión (mm)                   | 169.926 |
|            | Espesor (mm)                             | 50.8    |
| Drenaje    | Fracción de vacíos                       | 0.6     |
|            | Rugosidad                                | 0.4     |

Una vez definidos los parámetros del techo verde a utilizar se procede a determinar en qué proporción se usará. Bajo las condiciones del municipio de Cajicá en la fase 2, se determinó que los techos verdes podían usarse en apenas el 50% de las construcciones urbanas que pudieran ser viables. Se realizó un análisis del área de construcciones urbanas que podían ser usadas para techos verdes, en una zona típica urbana en el centro de Cajicá:







Ilustración 41 Centro de Cajicá

Ahora bien, el área que puede ser usada para techos verdes se encuentra a continuación:

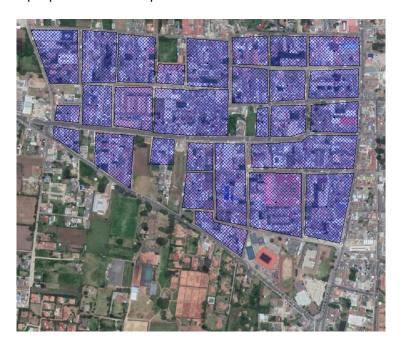



Ilustración 42 Zonas viables para techos verdes

El área total del área analizada es de 45.26 hectáreas y el área de construcción urbana corresponde a 29.4 hectáreas:





Tabla 9 Área de techos verdes en Cajicá

| Área total (ha) | 45.26  |  |
|-----------------|--------|--|
| Área de techos  | 29.4   |  |
| verdes          |        |  |
| Porcentaje      | 64.96% |  |

Así, se tiene que el porcentaje para techos verdes en Cajicá es del 64.96%, lo cual, concuerda además con el área asignada por el Manual EPA SWMM al área impermeable de zonas residenciales altamente urbanizadas (65%). Debido a la inclinación de los techos de Cajicá, se dijo que solo se usaría el 50% del área en que se presentaran techos. Por lo tanto, el área viable para la implementación de los techos verdes es de 32.5%.

### 3.4.2 SUDS escogido: Pavimento Permeable (PP)

En segundo lugar, se consideran los pavimentos permeables. Se usó un pavimento basado en un articulo del "Journal of Hydrologic Engineering", titulado "SWMM Simulation of the Storm Water Volume Control Performance of Permeable Pavement Systems". (Shouhong Zhang, 2014). Este artículo evalúa la confianza de la modelación de los pavimentos permeables en el SWMM, evaluando un caso de pavimentos permeables en la ciudad de Atlanta. Las características de los pavimentos permeables en este artículo fueron:

Tabla 10 Valores de los parámetros del modelo de pavimento permeable

| Componente | Parámetro                                | Valor |
|------------|------------------------------------------|-------|
|            | Almacenamiento<br>(o altura de<br>berma) | 1.5   |
| Superficie | Fracción de la<br>vegetación             | 0     |
|            | Rugosidad de la<br>superficie            | 0.015 |
|            | Grosor                                   | 200   |
| Pavimento  | Fracción de<br>vacíos                    | 0.16  |
|            | Permeabilidad                            | 254   |





|                | Altura                  | 450  |
|----------------|-------------------------|------|
| Almacenamiento | Relación de<br>vacíos   | 0.63 |
|                | Tasa de<br>infiltración | 3.3  |
| Suelo nativo   | Cabeza de<br>succión    | 88.9 |
|                | Conductividad           | 3.3  |

Algunos valores, como el factor de atasco, la cantidad de superficie impermeable, la regeneración o los factores relacionados con el drenaje fueron ignorados en la anterior tabla debido a que son nulos, irrelevantes o se usó su valor recomendado por EPA SWMM en la presente modelación.

Ahora bien, el área que corresponde a esta estructura vendría siendo también identificada en la zona escogida de análisis, altamente urbanizada de Cajicá, teniendo en cuenta que no puede ser usada en calles de volumen alto.



Ilustración 43 Área viable para pavimentos permeables





Así, se tiene la tabla a continuación:

Tabla 11 Área viable para PP

| Área total (ha) | 45.26  |
|-----------------|--------|
| Área de         |        |
| pavimentos      | 8.27   |
| permeables      |        |
| Porcentaje      | 18.27% |

Además de esto, se analizará la implementación de esta medida en solo el 50 % del área viable, ya que no se pretender usar completamente y las imágenes satelitales puedes generar errores. Por lo tanto, el área de pavimentos permeables corresponde al 9.14%

### 3.4.3 SUDS escogido: Zanja de infiltración (IT)

Las zanjas de infiltración (infiltration trenches en inglés) son angostos pasos rellenados con grava que interceptan la escorrentía proveniente de las áreas impermeables. Estas proporcionan almacenamiento y tiempo adicional para capturar la escorrentía e infiltrarla en el suelo nativo debajo. Los valores que se insertarán en el modelo de la zanja serán los siguientes, escogidos de los valores típicos que ofrece el manual de EPA SWMM y algunos casos de estudio (United States Environmental Protection Agency, 2015):

- Altura de la berma: en este caso se usará 0 milímetros, ya que se pretende que es una berma a ras con el suelo.
- Volumen de la vegetación: 0 para controles sin vegetación, y 0.2 para vegetaciones densas. Se adoptará un valor de 0.1.
- Coeficiente n de Manning para la superficie: no aplica para este tipo de SUDS, por lo que se usará el valor nulo.
- Pendiente: No se usa para este tipo de SUDS.
- El grosor del almacenamiento: es el factor fundamental en este tipo de SUDS. Los valores típicos van desde 400 a 900 milímetros (manual EPA SWMM), se usará un valor medio de 700 milímetros.
- Relación de vacíos: varían de 0.5 a 0.75, para camas de grava se usa 0.75. Se optará este valor.
- Tasa de infiltración: Un valor de diseño usado en un caso de estudio en Seúl, Corea, (Jae-Yeol Song, 2018), en el que usaron una tasa de infiltración de 210 mm/h. En general, este valor puede ser considerablemente alto considerando que la franja de infiltración permite que el agua llegue hasta el suelo nativo de la cuenca.





• Factor de atasco: un valor de 0 es lo adecuado para grava.

Es opcional insertar parámetros de drenaje, en este caso, se supone que la franja de infiltración no tendrá drenaje alguno.

Se analizarán los picos de caudales en cada una de las cuencas, y se discutirán sus resultados.





## 4 RESULTADOS

Siguiendo la metodología propuesta, se generaron 2 tipos de resultados: un hidrograma de salida para cada cuenca de análisis, que compara los efectos que tienen los 7 escenarios propuestos, y, en segundo lugar, un gráfico que muestra la reducción de escorrentía en las cuencas y la reducción del caudal pico en el nodo de salida. A continuación, se encuentran estos dos resultados para cada una de las cuencas:

## 4.1 Cuenca Noroccidental

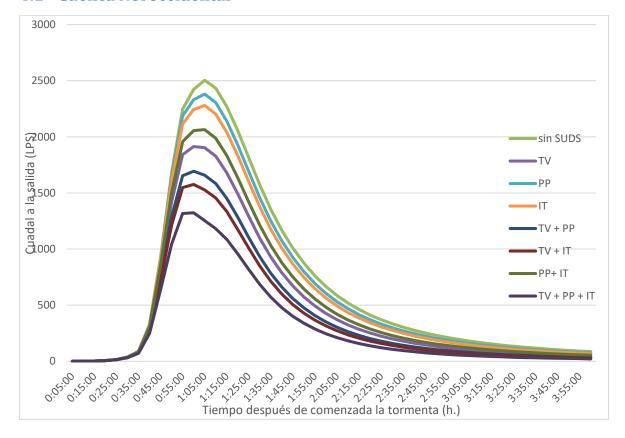



Figura 1 Hidrograma de salida en la salida de la cuenca Noroccidental





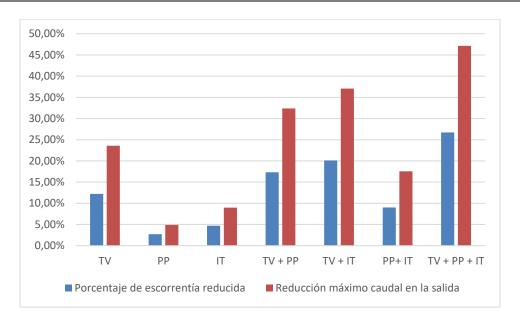



Figura 2 Porcentajes de reducción cuenca noroccidental

## 4.2 Cuenca Nororiental 1

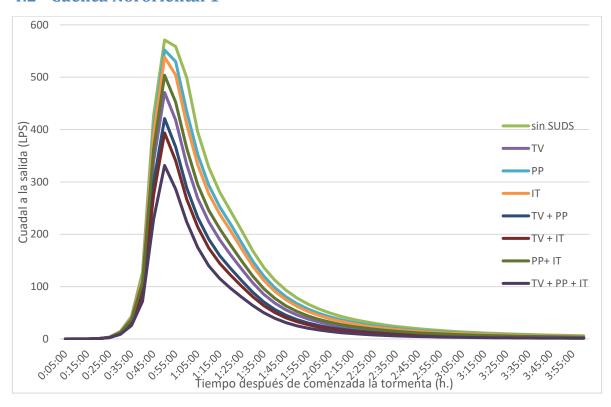



Figura 3 Hidrograma de salida en la salida de la cuenca Nororiental 1





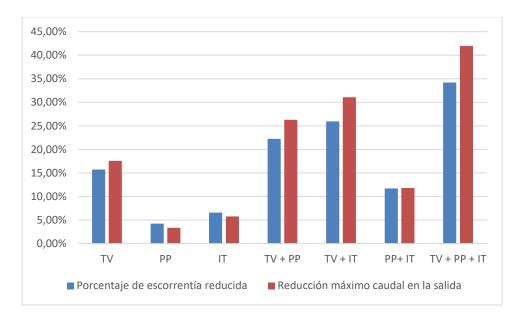



Figura 4 Porcentajes de reducción cuenca nororiental 1

## 4.3 Cuenca Nororiental 2

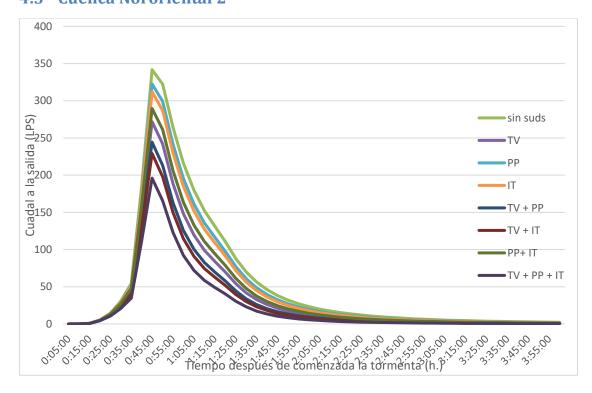



Figura 5 Hidrograma de salida en la salida de la cuenca Nororiental 2





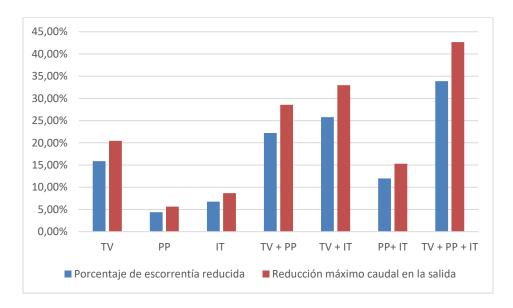



Figura 6 Porcentajes de reducción cuenca nororiental 2

# 4.4 Cuenca Nororiental 3

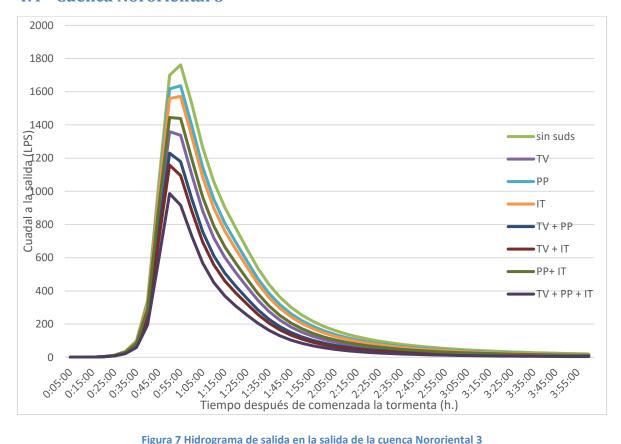



Figura 7 Hidrograma de salida en la salida de la cuenca Nororiental 3





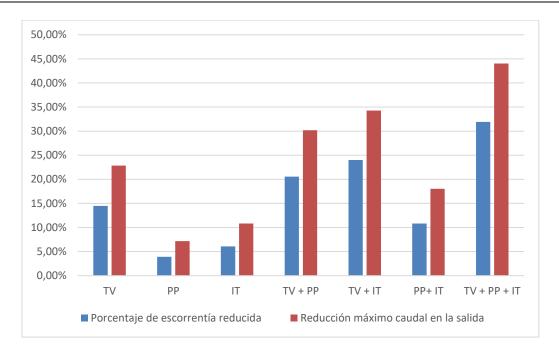



Figura 8 Porcentajes de reducción cuenca nororiental 3

## 4.5 Cuenca Sur 1

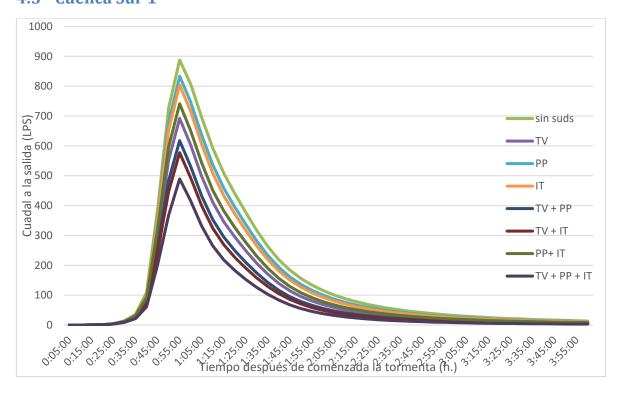



Figura 9 Hidrograma de salida en la salida de la cuenca Sur 1





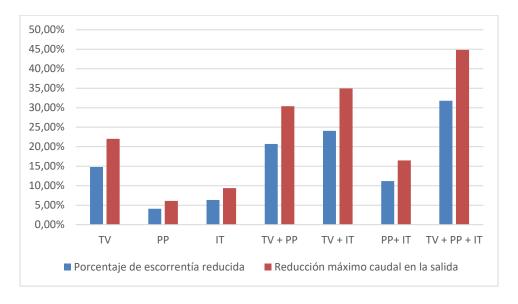



Figura 10 Porcentajes de reducción cuenca sur 1

# 4.6 Cuenca Sur 2

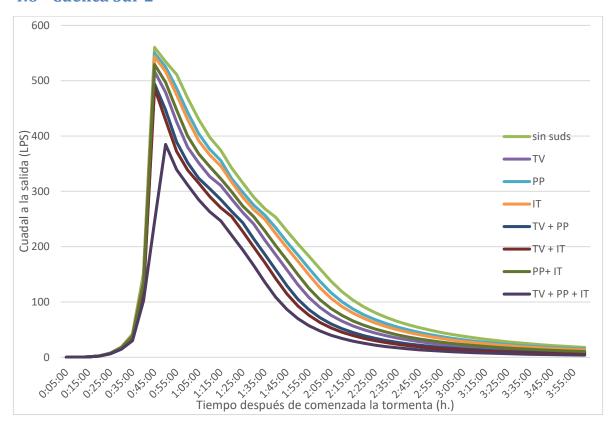



Figura 11 Hidrograma de salida en la salida de la cuenca Sur 2





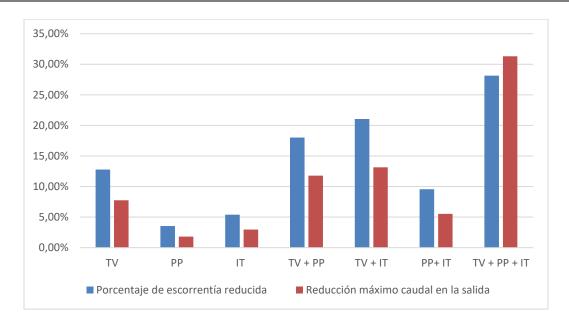



Figura 12 Porcentajes de reducción cuenca sur 2

## 4.7 Cuenca Sur 3

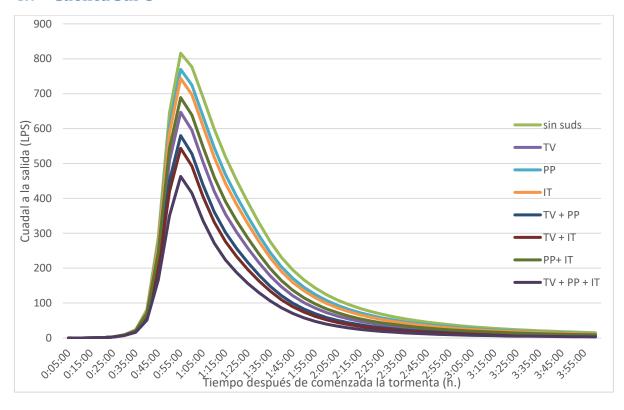



Figura 13 Hidrograma de salida en la salida de la cuenca Sur 3





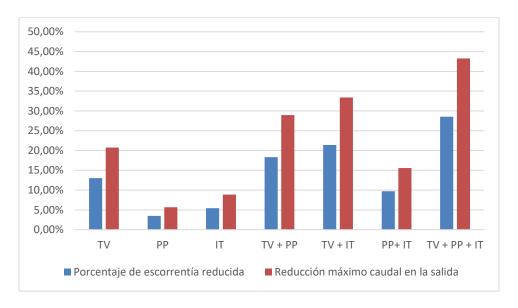



Figura 14 Porcentajes de reducción cuenca sur 3

## 4.8 Cuenca Sur 4

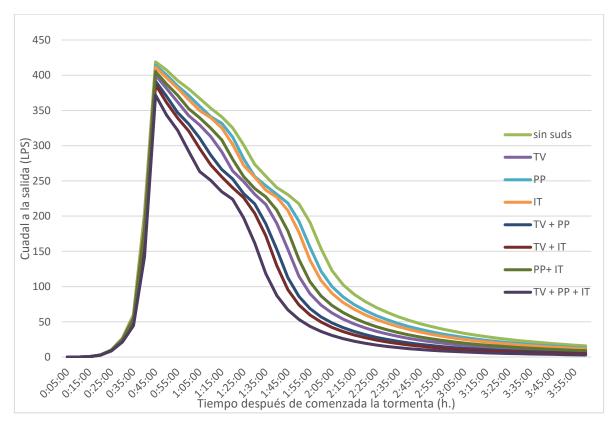



Figura 15 Hidrograma de salida en la salida de la cuenca Sur 4





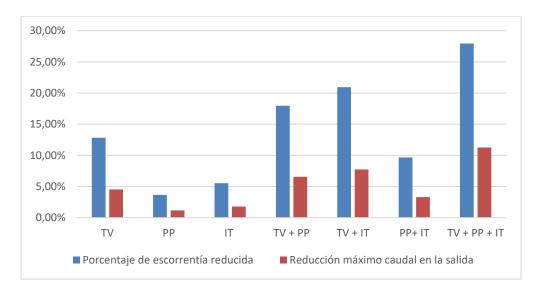



Figura 16 Porcentajes de reducción cuenca sur 4

## 4.9 Cuenca Sur 5

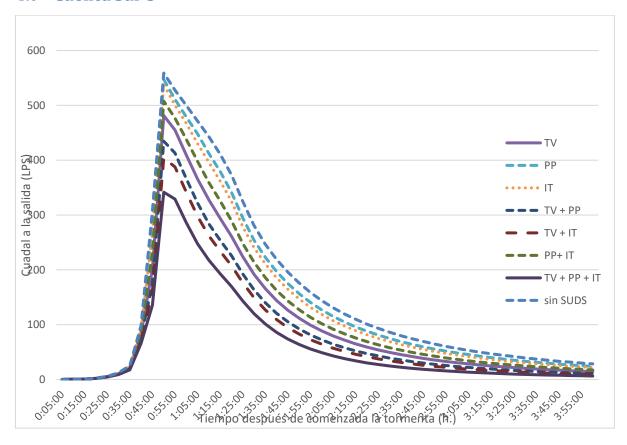



Figura 17 Hidrograma de salida en la salida de la cuenca Sur 5





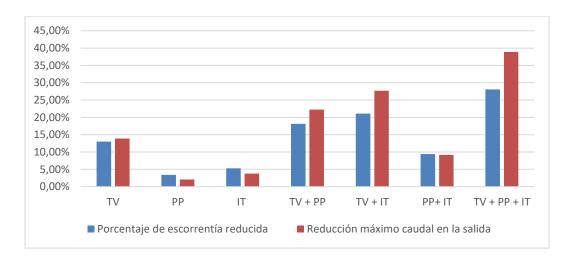



Figura 18 Porcentajes de reducción cuenca sur 5

### 4.10 Cuenca Sur PTAR

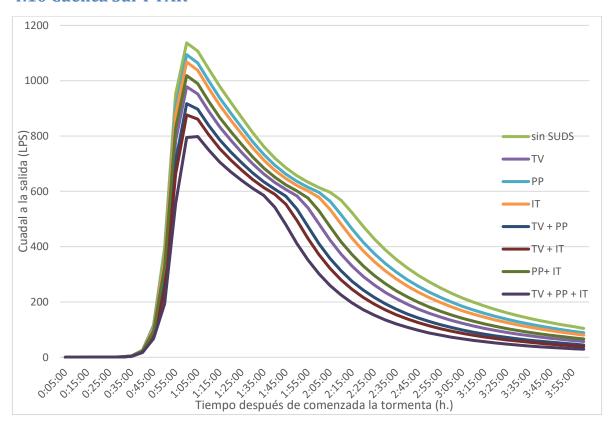



Figura 19 Hidrograma de salida en la salida de la cuenca Sur PTAR





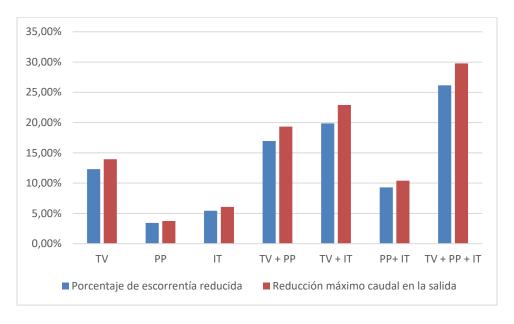



Figura 20 Porcentajes de reducción cuenca sur PTAR





# 5 ANÁLISIS DE RESULTADOS

Combinando las estructuras SUDS analizadas, un total de 80 escenarios en EPA SWMM fueron analizados (que se anexan al presente proyecto de grado), para inferir el efecto que estos tienen en ciudades del trópico, caracterizadas por tener alta precipitación y urbanismo como Cajicá. En todos los casos, se llegó a una reducción importante del caudal de salida y de la escorrentía generada en la zona. Se logró una reducción del caudal pico que varía del 15% al 48% entre las cuencas analizadas, con la combinación correspondiente a las tres estructuras SUDS. La mayor reducción se provocó en la cuenca noroccidental, la más grande, mientras que la más pequeña se presentó en la cuenca sur 4, una de las cuencas más pequeñas. La reducción de la escorrentía fue menos variable. Este valor, varió del 22% al 35% en algunos casos. La mayor reducción se presentó en cuencas relativamente pequeñas: las cuencas nororientales 1 y 2, con una reducción del 34% cada una, y la cuenca sur 4, con una reducción del 32%. Contrariamente, la cuenca noroccidental (la más grande), que había presentado la mayor reducción a su caudal pico, presentó la menor reducción de escorrentía. Esto significa que para cuencas pequeñas es más considerable la reducción de la escorrentía total que se presenta que la reducción del pico de caudal a la salida de la cuenca.

Se puede observar que los resultados siguen un patrón: la implementación de techos verdes resultó ser mejor en comparación con los pavimentos permeables y las franjas de infiltración, por lo que sería la mejor opción en cuanto a eficiencia. Esto ocurre, entre otras cosas, por la gran área que estos pueden ocupar. Los techos verdes, como se mencionó antes, potencialmente pueden ocupar un área de aproximadamente un tercio de cada una de las cuencas urbanizadas. Mientras tanto, las franjas de infiltración y los pavimentos permeables solo llegan a ocupar el 13 y el 9 por ciento de la zona, respectivamente. Lo anterior se debe a, como se comentó anteriormente, que los pavimentos permeables no pueden instalarse en carreteras de alto tráfico. Paralelamente, las franjas de infiltración sólo pueden ser instaladas en los andenes y preferiblemente los lugares de bajo tráfico (como los pavimentos permeables).

Se debe tener en cuenta, además, las propiedades utilizadas para los diferentes SUDS. Hay que recordar que los techos verdes usados fueron los casos de éxito en el análisis realizado en la fase de Cajicá, en el que estos presentaban reducciones considerables similares a las obtenidas en el presente documento. Estos techos presentan un espesor relativamente grande, ya que corresponde a 152.4 mientras que los valores típicos varían desde 50 milímetros hasta 200. Por otro lado, los parámetros escogidos para las franjas de infiltración y los pavimentos permeables se encuentran dentro de los rangos típicos de estas estructuras.





Un punto muy importante es que en todos los casos se observa una mejor eficiencia conjunta de los SUDS. Es decir, cada SUDS, cuando se combina con otro presenta mejores resultados de reducción de volumen de agua. Contemplando el escenario del pavimento permeable individualmente, se observa que en ninguna cuenca la reducción de escorrentía es más del 7% ni más del 5% de reducción de caudal. Sin embargo, cuando se combina con los techos verdes (considerando que los valores de techos verdes, individualmente, oscilan entre 10%-15%), presenta reducciones del 25%. Así mismo, las demás combinaciones resultan ser más beneficiosas que si simplemente se sumara el porcentaje de reducción individual de cada uno de los SUDS. Cuando se combinan las tres estructuras SUDS, se observa que se alcanzan valores que triplican a los valores obtenidos por los techos verdes individualmente.





### **6 CONCLUSIONES**

En este estudio se modelaron 10 cuencas ubicadas en lo que vendría siendo el terreno de la fase 3 del Plan Maestro de Alcantarillado ((P.M.A) del municipio de Cajicá, lo que corresponde actualmente a zonas rurales de poca urbanización. Se determinó que Cajicá presentaría un crecimiento urbano y poblacional en los próximos años, por lo que es necesario, para el P.M.A, un diseño de la red pluvial que responda satisfactoriamente a una zona totalmente urbanizada con un alto porcentaje de impermeabilidad. Por esto, se propuso un diseño conformado por 4 cuencas en el norte y 6 en el sur de Cajicá, cuyos nodos de descarga se reparten entre el río frío, el río Bogotá y dos plantas de tratamiento ubicadas en el municipio. Propuesto el diseño, se modelaron 7 combinaciones diferentes de 3 tipos de estructuras SUDS: techos verdes, pavimentos permeables y zanjas de infiltración. Se compararon estos modelos entre si y con una situación sin SUDS y se evaluaron sus resultados.

Comparando los 80 modelos realizados se determinó que los niveles de reducción de escorrentía, aplicando simultáneamente las 3 estructuras SUDS ya mencionadas, son capaces de reducir la escorrentía un 25%-35%, y reducir el caudal de descarga de las cuencas un 15-48%.

En este estudio los techos verdes presentaron un mejor rendimiento frente a las demás estructuras SUDS. Este rendimiento se debe principalmente a la gran diferencia de área viable de implementación, que representa una gran ventaja para los techos verdes en ciudades altamente urbanizadas.

En cuanto a responder a la pregunta ¿cuál es la mejor estructura SUDS?, este estudio deja en evidencia que, para ciudades urbanizadas como Cajicá, ubicada en un país tropical (además el más lluvioso del mundo), esta pregunta no puede ser respondida directamente. En primer lugar, la pregunta debería ser formulada como ¿Cuál es la mejor combinación de SUDS?, ya que se ha observado que las estructuras presentan mejor rendimiento cuando se implementan simultáneamente con otras estructuras SUDS. En segundo lugar, en este estudio se observó que los techos verdes presentan mejores reducciones de volúmenes de agua que los pavimentos permeables y las zanjas de infiltración. Sin embargo, el hecho se le atribuye principalmente al área en que estos podían ser implementados. De esta manera, la mejor combinación de SUDS depende de la configuración de la ciudad en que se implemente, ya que esto permitiría mayor o menor facilidad de implementar una u otra. Sin embargo, es cierto que, independiente de la combinación de SUDS que se elija, la reducción de volúmenes de agua que esta puede provocar es considerable y debe ser estudiada por los planeadores urbanos.





## 7 RECOMENDACIONES

De lo discutido en la sección de conclusiones, al determinar que estructura SUDS es viable para una ciudad determinada, se recomienda observar cada caso individualmente ya que las condiciones de cada ciudad pueden ser diferentes.

Al modelar con EPA SWMM no se usó ningún parámetro de sensibilidad en el presente estudio, por lo que la confianza del software queda bajo el juicio del usuario de los modelos realizados o lector del documento.

Al usar EPA SWMM, se recomienda optar por un editor global como Excel a la hora de modificar los datos.





# 8 BIBLIOGRAFÍA

- Abellán, A. (2019). SUD Sostenible. Obtenido de Origen de los Sistemas Urbanos de Drenaje Sostenible: http://sudsostenible.com/sistemas-urbanos-de-drenaje-sostenible/origen-de-los-sistemas-urbanos-de-drenaje-sostenible/
- Bentley Communities. (2017). Hidrology and hydraulic products. Advancing Water Infrastructure.
- Bonilla, L. (2019). EVALUACIÓN DE LA INFLUENCIA DE LOS SISTEMAS DE DRENAJE URBANO SOSTENIBLE EN LA REDUCCIÓN DEL RIESGO DE INUNDACIÓN URBANA. Proyecto de Grado, Universidad de los Andes, Departamento de Ingeniería Civil y Ambiental. CIACUA, Bogotá.
- Chaeyoung Bae, D. K. (2020). Effects of low-impact development practices for flood events at the. *International Journal of Disaster Risk Reduction*.
- Chaeyoung Bae, D. K. (2020). Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area. *International Journal of Disaster Risk Reduction*.
- El Espectador. (2 de Febrero de 2020). Inundaciones en Bogotá: cinco localidades afectadas. *El Espectador*.
- Empresa de Servicios Públicos de Cajicá S.A. E.S.P. & INGEQMA. (2018). ESTUDIOS Y DISEÑOS PLAN MAESTRO DE ALCANTARILLADO ETAPA II, MUNICIPIO DE CAJICÁ. Cajicá.
- Food and Agriculture Organization of the United Nations. (2014). *Climate Information Tool*. Obtenido de Average precipitation in depth (mm per year).
- Groncol. (2020). Techos verdes. Obtenido de BTS: http://groncol.com/proyectos-todos/page/3/
- Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2020). *CURVAS IDF*. Obtenido de CURVAS INTENSIDAD DURACIÓN FRECUENCIA –IDF.
- Instituto Distrital de Recreación y Deporte. (2017). *Parque Simón Bolívar*. Obtenido de https://www.idrd.gov.co/parque-metropolitano-simon-bolivar
- Jae-Yeol Song, E.-S. C. (2 de Febrero de 2018). Decision Support System for the Design and Planning of Low-Impact Development Practices: The Case of Seoul. *Water journal*, 16.
- Maochuan Hu, T. S. (2017). Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China. *Journal of Environmental Management*, 430-438.





- McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water. *Hydrological Sciences journal*.
- Ministerio de Desarrollo Económico. (2000). *REGLAMENTO TÉCNICO DEL SECTOR DE AGUA POTABLE Y SANEAMIENTO BASICO RAS 2000*. BOGOTA D.C., República de Colombia.
- National Oceanic and Atmospheric Administration (NOAA). (2020). *Freshwater*. Obtenido de Water cycle.
- Richter, M. (2016). Precipitation in the tropics. En M. K. L. Pancel, *Tropical Forestry Handbook* (págs. 363-390). Berlin.
- Roberto Pizarro Tapia, J. P. (2004). *Monografías ZANJAS DE INFILTRACION*. Monografía, Universidad de Talca, Talca, Chile.
- Ruby, E. (s.f.). How Urbanization Affects the Water Cycle. California.
- S. Tang, W. L. (2016). Evaluating Retention Capacity of Infiltration Rain Gardens and Their Potential Effect on Urban Stormwater Management in the Sub-Humid Loess Region of China. *Water Resour Manage*, 983-1000.
- Sara Perales-Momparler, C. H.-C.-M.-D. (17 de Septiembre de 2013). SuDS Efficiency during the Start-Up Period under Mediterranean Climatic Conditions. *Clean Soil Air Water*, 178-186.
- Shouhong Zhang, Y. G. (Septiembre de 2014). SWMM Simulation of the Storm Water Volume Control Performance of Permeable Pavement Systems. *Journal of Hydrologic Engineering*, 06014010-1 06014010-5.
- The World Bank Group. (2019). *THE WORLD BANK*. Obtenido de Average precipitation in depth (mm per year): https://data.worldbank.org/indicator/AG.LND.PRCP.MM?end=2014&start=1962
- United States Environmental Protection Agency. (2015). Storm Water Management Model User's Manual Version 5.1. Estados Unidos.
- Wenyu Yang, K. B. (7 de Enero de 2020). Measuring performance of low impact development practices for the surface runoff management. *Environmental Science and Ecotechnology*.
- Wu, I. (1975). Design on Drip Irrigation Main Lines. *Journal of the Irrigation and Drainage Division, ASCE*.
- Zheng Peng, K. J. (2018). Effects of Low-Impact Development on Urban Rainfall Runoff under Different Rainfall Characteristics. *Journal of Environmental Studies*, 771-783.









## 9 ANEXOS

# 9.1 Cuenca Noroccidental

Tabla 12 Diseño de las tuberías de la cuenca Noroccidental

| Tubería | In   | Out  | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal de<br>diseño | Pendiente |
|---------|------|------|------|------------------|----------------|-----------------------|---------------------|---------------------|-----------|
| -       | -    | -    | m    | m                | m              | m                     | m                   | m³/s                | -         |
| C10     | n889 | n890 | 1.40 | 2570.80          | 2570.50        | 19.00                 | 19.20               | 3.98                | 0.0029    |
| C16     | n906 | n889 | 1.35 | 2571.47          | 2570.80        | 18.60                 | 19.00               | 3.66                | 0.0026    |
| C19     | n905 | n906 | 0.20 | 2588.43          | 2576.67        | 2.10                  | 13.40               | 0.09                | 0.2071    |
| C22     | n900 | n899 | 0.25 | 2590.00          | 2576.71        | 1.50                  | 13.20               | 0.13                | 0.2515    |
| C24     | n899 | n906 | 1.35 | 2571.71          | 2571.47        | 18.20                 | 18.60               | 3.54                | 0.0029    |
| C25     | n888 | n899 | 1.35 | 2571.94          | 2571.71        | 17.00                 | 18.20               | 3.39                | 0.0024    |
| C26     | n864 | n888 | 1.35 | 2572.21          | 2571.94        | 15.50                 | 17.00               | 3.34                | 0.0025    |
| C29     | n867 | n866 | 1.05 | 2573.06          | 2572.61        | 17.40                 | 17.40               | 2.20                | 0.0040    |
| C34     | n859 | n860 | 1.05 | 2576.95          | 2576.82        | 8.50                  | 8.50                | 0.85                | 0.0010    |
| C36     | n857 | n859 | 1.05 | 2576.99          | 2576.95        | 8.40                  | 8.50                | 0.81                | 0.0013    |
| C37     | n850 | n857 | 0.70 | 2577.33          | 2576.99        | 7.20                  | 8.40                | 0.79                | 0.0041    |
| C45     | n854 | n852 | 0.20 | 2583.74          | 2583.56        | 1.40                  | 1.50                | 0.01                | 0.0041    |
| C46     | n849 | n850 | 0.70 | 2577.45          | 2577.33        | 6.90                  | 7.20                | 0.73                | 0.0037    |
| C47     | n845 | n849 | 0.70 | 2577.70          | 2577.45        | 6.60                  | 6.90                | 0.72                | 0.0035    |
| C51     | n843 | n845 | 0.70 | 2577.94          | 2577.70        | 6.30                  | 6.60                | 0.71                | 0.0049    |
| C52     | n844 | n843 | 0.30 | 2584.25          | 2582.74        | 1.50                  | 1.50                | 0.11                | 0.0148    |
| C55     | n838 | n840 | 0.70 | 2578.40          | 2578.26        | 5.60                  | 5.80                | 0.56                | 0.0039    |
| C56     | n839 | n838 | 0.20 | 2583.36          | 2582.60        | 1.40                  | 1.40                | 0.03                | 0.0075    |
| C59     | n831 | n836 | 0.70 | 2578.83          | 2578.63        | 4.70                  | 5.10                | 0.49                | 0.0020    |
| C89     | n918 | n917 | 0.20 | 2582.27          | 2582.04        | 1.40                  | 1.50                | 0.01                | 0.0037    |
| C90     | n926 | n917 | 0.30 | 2582.34          | 2582.04        | 1.40                  | 1.50                | 0.07                | 0.0040    |
| C93     | n928 | n926 | 0.20 | 2582.70          | 2582.34        | 1.40                  | 1.40                | 0.02                | 0.0035    |
| C105    | n954 | n952 | 1.05 | 2580.47          | 2578.31        | 8.00                  | 10.40               | 0.96                | 0.0414    |
| C106    | n952 | n868 | 1.05 | 2578.31          | 2578.21        | 10.40                 | 11.60               | 1.07                | 0.0011    |
| C107    | n868 | n867 | 1.05 | 2573.91          | 2573.06        | 15.90                 | 17.40               | 2.14                | 0.0034    |
| C118    | n875 | n874 | 1.05 | 2574.40          | 2574.33        | 16.90                 | 16.70               | 0.82                | 0.0007    |
| C119    | n874 | n873 | 1.05 | 2574.33          | 2574.17        | 16.70                 | 16.70               | 0.85                | 0.0013    |





| C120  | n873  | n871  | 1.05 | 2574.17 | 2574.11 | 16.70 | 16.60 | 0.89 | 0.0008 |
|-------|-------|-------|------|---------|---------|-------|-------|------|--------|
| C121  | n871  | n870  | 1.05 | 2574.11 | 2574.00 | 16.60 | 16.20 | 0.93 | 0.0018 |
| C122  | n870  | n868  | 1.05 | 2574.00 | 2573.91 | 16.20 | 15.90 | 0.95 | 0.0008 |
| C125  | n949  | n950  | 0.30 | 2584.62 | 2575.10 | 2.50  | 13.20 | 0.13 | 0.1304 |
| C126  | n948  | n949  | 0.30 | 2585.01 | 2584.62 | 1.90  | 2.50  | 0.09 | 0.0064 |
| C138  | n2048 | n917  | 0.45 | 2580.02 | 2579.74 | 4.00  | 3.80  | 0.13 | 0.0021 |
| C139  | n2047 | n2048 | 0.40 | 2580.14 | 2580.02 | 3.70  | 4.00  | 0.08 | 0.0014 |
| C308  | N4    | N6    | 0.70 | 2584.40 | 2584.10 | 2.50  | 2.70  | 0.28 | 0.0013 |
| C309  | N5    | N4    | 0.60 | 2584.60 | 2584.40 | 2.40  | 2.50  | 0.20 | 0.0013 |
| C412  | N14   | N5    | 0.50 | 2585.10 | 2584.60 | 1.70  | 2.40  | 0.12 | 0.0016 |
| C1024 | N8    | N9    | 0.80 | 2583.70 | 2583.60 | 2.50  | 2.50  | 0.48 | 0.0011 |
| C1025 | N9    | N10   | 0.80 | 2583.60 | 2583.40 | 2.50  | 2.30  | 0.50 | 0.0014 |
| C1026 | N10   | N16   | 0.80 | 2583.40 | 2583.10 | 2.30  | 2.50  | 0.63 | 0.0016 |
| C1027 | N16   | N19   | 0.80 | 2583.10 | 2582.90 | 2.50  | 2.60  | 0.68 | 0.0019 |
| C1028 | N19   | N20   | 0.80 | 2582.90 | 2582.60 | 2.60  | 2.50  | 0.73 | 0.0018 |
| C1029 | N11   | N10   | 0.38 | 2584.20 | 2584.00 | 1.60  | 1.70  | 0.07 | 0.0017 |
| C1032 | N23   | N22   | 0.35 | 2585.30 | 2584.90 | 1.60  | 1.80  | 0.06 | 0.0012 |
| C1033 | N22   | N6    | 0.40 | 2584.90 | 2584.60 | 1.80  | 2.20  | 0.11 | 0.0020 |
| C1035 | n938  | N20   | 0.20 | 2584.14 | 2583.70 | 1.40  | 1.40  | 0.03 | 0.0101 |
| C1037 | n898  | N24   | 1.50 | 2569.49 | 2569.30 | 19.90 | 19.90 | 4.18 | 0.0023 |
| C1045 | N31   | N35   | 0.40 | 2600.40 | 2599.37 | 1.60  | 2.20  | 0.20 | 0.0061 |
| C1052 | N37   | n877  | 1.05 | 2574.80 | 2574.61 | 15.70 | 18.30 | 0.23 | 0.0013 |
| C1065 | n890  | n892  | 1.40 | 2570.50 | 2570.00 | 19.20 | 19.60 | 4.08 | 0.0030 |
| C1066 | n835  | n831  | 0.25 | 2583.69 | 2582.03 | 1.50  | 1.50  | 0.08 | 0.0268 |
| C60   | N20   | n931  | 0.80 | 2582.60 | 2582.28 | 2.50  | 2.20  | 0.83 | 0.0022 |
| C61   | n826  | n827  | 0.70 | 2579.23 | 2579.02 | 3.20  | 4.00  | 0.31 | 0.0014 |
| C76   | n944  | n938  | 0.20 | 2584.74 | 2584.14 | 1.40  | 1.40  | 0.01 | 0.0056 |
| C80   | n946  | n948  | 0.20 | 2585.29 | 2585.01 | 1.40  | 1.90  | 0.02 | 0.0033 |
| C124  | n907  | n910  | 1.05 | 2583.00 | 2574.97 | 19.90 | 19.90 | 0.12 | 0.0534 |
| C131  | n892  | n898  | 1.40 | 2570.00 | 2569.49 | 19.60 | 19.90 | 4.17 | 0.0032 |
| C133  | n829  | n831  | 0.70 | 2578.92 | 2578.83 | 4.40  | 4.70  | 0.39 | 0.0011 |
| C134  | n827  | n829  | 0.70 | 2579.02 | 2578.92 | 4.00  | 4.40  | 0.33 | 0.0011 |
| C135  | n840  | n843  | 0.70 | 2578.26 | 2577.94 | 5.80  | 6.30  | 0.59 | 0.0024 |
| C145  | n885  | N35   | 0.20 | 2604.50 | 2600.17 | 1.40  | 1.40  | 0.04 | 0.0236 |
| C1    | n2049 | n2045 | 0.20 | 2580.89 | 2580.45 | 1.40  | 2.20  | 0.02 | 0.0026 |
| C3    | n913  | n826  | 0.70 | 2579.40 | 2579.23 | 3.40  | 3.20  | 0.30 | 0.0015 |
| C4    | n2045 | n2047 | 0.30 | 2580.45 | 2580.14 | 2.20  | 3.70  | 0.04 | 0.0018 |
| C5    | N6    | N8    | 0.70 | 2584.10 | 2583.70 | 2.70  | 2.50  | 0.46 | 0.0015 |





| C7                                                             | N33                                                                                                  | N7                                                                                             | 0.38                                                                             | 2601.30                                                               | 2600.90                                                                   | 1.60                                                                                                                                                         | 1.60                                                                                                                                                               | 0.09                                                                              | 0.0021                                                                                          |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| C9                                                             | N7                                                                                                   | N31                                                                                            | 0.40                                                                             | 2600.90                                                               | 2600.40                                                                   | 1.60                                                                                                                                                         | 1.60                                                                                                                                                               | 0.16                                                                              | 0.0040                                                                                          |
| C11                                                            | N35                                                                                                  | N1                                                                                             | 0.40                                                                             | 2599.37                                                               | 2598.10                                                                   | 2.20                                                                                                                                                         | 2.00                                                                                                                                                               | 0.32                                                                              | 0.0144                                                                                          |
| C12                                                            | N1                                                                                                   | N3                                                                                             | 0.40                                                                             | 2598.10                                                               | 2593.70                                                                   | 2.00                                                                                                                                                         | 1.60                                                                                                                                                               | 0.35                                                                              | 0.0316                                                                                          |
| C31                                                            | n950                                                                                                 | N37                                                                                            | 1.05                                                                             | 2575.10                                                               | 2574.80                                                                   | 13.20                                                                                                                                                        | 15.70                                                                                                                                                              | 0.19                                                                              | 0.0020                                                                                          |
| C32                                                            | n933                                                                                                 | n954                                                                                           | 0.80                                                                             | 2581.71                                                               | 2580.47                                                                   | 4.70                                                                                                                                                         | 8.00                                                                                                                                                               | 0.96                                                                              | 0.0028                                                                                          |
| C33                                                            | n917                                                                                                 | n913                                                                                           | 0.70                                                                             | 2579.74                                                               | 2579.40                                                                   | 3.80                                                                                                                                                         | 3.40                                                                                                                                                               | 0.24                                                                              | 0.0013                                                                                          |
| C35                                                            | n931                                                                                                 | n933                                                                                           | 0.80                                                                             | 2582.28                                                               | 2581.71                                                                   | 2.20                                                                                                                                                         | 4.70                                                                                                                                                               | 0.92                                                                              | 0.0029                                                                                          |
| C38                                                            | n836                                                                                                 | n838                                                                                           | 0.70                                                                             | 2578.63                                                               | 2578.40                                                                   | 5.10                                                                                                                                                         | 5.60                                                                                                                                                               | 0.52                                                                              | 0.0022                                                                                          |
| C39                                                            | n852                                                                                                 | n850                                                                                           | 0.20                                                                             | 2583.56                                                               | 2583.13                                                                   | 1.50                                                                                                                                                         | 1.40                                                                                                                                                               | 0.02                                                                              | 0.0041                                                                                          |
| C40                                                            | n860                                                                                                 | n864                                                                                           | 1.05                                                                             | 2576.82                                                               | 2576.61                                                                   | 8.50                                                                                                                                                         | 11.10                                                                                                                                                              | 0.92                                                                              | 0.0007                                                                                          |
| C41                                                            | n866                                                                                                 | n864                                                                                           | 1.20                                                                             | 2572.61                                                               | 2572.21                                                                   | 17.40                                                                                                                                                        | 15.50                                                                                                                                                              | 2.36                                                                              | 0.0024                                                                                          |
| C42                                                            | n902                                                                                                 | n900                                                                                           | 0.25                                                                             | 2593.73                                                               | 2590.00                                                                   | 1.50                                                                                                                                                         | 1.50                                                                                                                                                               | 0.08                                                                              | 0.0236                                                                                          |
| C43                                                            | n903                                                                                                 | n905                                                                                           | 0.20                                                                             | 2592.96                                                               | 2588.43                                                                   | 1.40                                                                                                                                                         | 2.10                                                                                                                                                               | 0.08                                                                              | 0.0295                                                                                          |
| C44                                                            | n910                                                                                                 | n889                                                                                           | 1.05                                                                             | 2574.97                                                               | 2574.60                                                                   | 19.90                                                                                                                                                        | 15.20                                                                                                                                                              | 0.16                                                                              | 0.0016                                                                                          |
| C48                                                            | N3                                                                                                   | n877                                                                                           | 0.45                                                                             | 2593.70                                                               | 2591.21                                                                   | 1.60                                                                                                                                                         | 1.70                                                                                                                                                               | 0.40                                                                              | 0.0160                                                                                          |
| C49                                                            | n877                                                                                                 | n875                                                                                           | 1.05                                                                             | 2574.61                                                               | 2574.40                                                                   | 18.30                                                                                                                                                        | 16.90                                                                                                                                                              | 0.70                                                                              | 0.0010                                                                                          |
| C50                                                            | N24                                                                                                  | N12                                                                                            | 1.50                                                                             | 2569.30                                                               | 2569.10                                                                   | 19.90                                                                                                                                                        | 19.90                                                                                                                                                              | 4.33                                                                              | 0.0025                                                                                          |
| C53                                                            | N12                                                                                                  | S10                                                                                            | 1.35                                                                             | 2569.10                                                               | 2568.90                                                                   | 10.00                                                                                                                                                        | 19.90                                                                                                                                                              | 4.38                                                                              | 0.0047                                                                                          |
| CJS                                                            | INIZ                                                                                                 | 310                                                                                            | 1.33                                                                             | 2303.10                                                               | 2506.90                                                                   | 19.90                                                                                                                                                        | 19.90                                                                                                                                                              | 4.50                                                                              | 0.0047                                                                                          |
| Tubería                                                        | Longitud                                                                                             | Relación de<br>Ilenado                                                                         | yn                                                                               | Theta                                                                 | Radio                                                                     | Área                                                                                                                                                         | Velocidad                                                                                                                                                          | tao                                                                               | Froude                                                                                          |
|                                                                |                                                                                                      | Relación de                                                                                    |                                                                                  |                                                                       |                                                                           |                                                                                                                                                              |                                                                                                                                                                    |                                                                                   |                                                                                                 |
|                                                                | Longitud                                                                                             | Relación de                                                                                    | yn                                                                               | Theta                                                                 | Radio                                                                     | Área                                                                                                                                                         | Velocidad                                                                                                                                                          | tao                                                                               |                                                                                                 |
| Tubería<br>-                                                   | Longitud<br>m                                                                                        | Relación de<br>Ilenado                                                                         | yn<br>m                                                                          | Theta<br>rad                                                          | Radio<br>m                                                                | Área<br>m2                                                                                                                                                   | Velocidad<br>m/s                                                                                                                                                   | tao<br>Kpa                                                                        | Froude<br>-                                                                                     |
| Tubería<br>-<br>C10                                            | Longitud<br>m<br>102.984                                                                             | Relación de<br>llenado<br>-<br>0.741                                                           | yn<br>m<br>1.04                                                                  | Theta rad 4.15                                                        | Radio<br>m<br>0.42                                                        | Área<br>m2<br>1.22                                                                                                                                           | Velocidad<br>m/s<br>3.25                                                                                                                                           | tao<br>Kpa<br>12.04                                                               | Froude<br>-<br>1.0410                                                                           |
| Tubería  - C10 C16                                             | Longitud<br>m<br>102.984<br>262.402                                                                  | Relación de<br>Ilenado<br>-<br>0.741<br>0.796                                                  | yn<br>m<br>1.04<br>1.08                                                          | Theta rad 4.15 4.41                                                   | <b>m</b> 0.42 0.41                                                        | Área  m2  1.22  1.22                                                                                                                                         | <b>Velocidad m/s</b> 3.25 2.99                                                                                                                                     | <b>Kpa</b> 12.04 10.33                                                            | -<br>1.0410<br>0.9002                                                                           |
| -<br>C10<br>C16<br>C19                                         | Longitud<br>m<br>102.984<br>262.402<br>57.988                                                        | Relación de llenado - 0.741 0.796 0.403                                                        | yn<br>m<br>1.04<br>1.08<br>0.08                                                  | Theta rad 4.15 4.41 2.75                                              | <b>m</b> 0.42 0.41 0.04                                                   | <b>Área</b> m2  1.22  1.22  0.01                                                                                                                             | <b>Velocidad m/s</b> 3.25 2.99 7.78                                                                                                                                | tao<br>Kpa<br>12.04<br>10.33<br>87.44                                             | Froude<br>-<br>1.0410<br>0.9002<br>10.1177                                                      |
| Tubería                                                        | Longitud  m 102.984 262.402 57.988 54.488                                                            | Relación de llenado - 0.741 0.796 0.403 0.328                                                  | yn  m  1.04  1.08  0.08  0.08                                                    | Theta rad 4.15 4.41 2.75 2.44                                         | Radio  m 0.42 0.41 0.04 0.05                                              | <b>Área</b> m2  1.22  1.22  0.01  0.01                                                                                                                       | <b>Velocidad m/s</b> 3.25  2.99  7.78  9.02                                                                                                                        | tao<br>Kpa<br>12.04<br>10.33<br>87.44<br>113.46                                   | Froude - 1.0410 0.9002 10.1177 11.7777                                                          |
| Tubería                                                        | m<br>102.984<br>262.402<br>57.988<br>54.488<br>81.006                                                | Relación de llenado - 0.741 0.796 0.403 0.328 0.728                                            | yn  1.04 1.08 0.08 0.08 0.98                                                     | Theta rad 4.15 4.41 2.75 2.44 4.09                                    | Radio  m 0.42 0.41 0.04 0.05 0.40                                         | <b>Área</b> m2  1.22  1.22  0.01  0.01  1.12                                                                                                                 | w/s           3.25           2.99           7.78           9.02           3.17                                                                                     | tao<br>Kpa<br>12.04<br>10.33<br>87.44<br>113.46<br>11.56                          | Froude - 1.0410 0.9002 10.1177 11.7777 1.0513                                                   |
| Tubería  - C10 C16 C19 C22 C24 C25                             | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136                                              | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765                                      | yn  1.04  1.08  0.08  0.08  0.98  1.03                                           | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26                               | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41                                    | <b>Área</b> m2  1.22  1.22  0.01  0.01  1.12  1.17                                                                                                           | velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88                                                                              | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67                                      | Froude  - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095                                           |
| Tubería  - C10 C16 C19 C22 C24 C25 C26                         | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136 105.574                                      | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740                                | yn 1.04 1.08 0.08 0.08 0.98 1.03 1.00                                            | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14                          | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41                               | Área  m2  1.22  1.22  0.01  0.01  1.12  1.17  1.14                                                                                                           | Velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94                                                                   | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04                                | - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588                                            |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29                     | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506                              | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.740                          | yn  1.04  1.08  0.08  0.08  0.98  1.03  1.00  0.78                               | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 4.14                     | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41 0.32                          | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69                                                        | Velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21                                                        | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26                          | Froude  - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863                             |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29 C34                 | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506 126.533                      | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.631                          | yn 1.04 1.08 0.08 0.08 0.98 1.03 1.00 0.78 0.66                                  | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 4.14 3.67                | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41 0.32 0.30                     | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69       0.58                                             | velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21       1.48                                             | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26 2.99                     | Froude  - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863 0.6285                      |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29 C34 C36             | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506 126.533 35.506               | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.740 0.631 0.559              | yn  1.04  1.08  0.08  0.08  0.98  1.03  1.00  0.78  0.66  0.59                   | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 4.14 3.67 3.38           | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41 0.32 0.30 0.28                | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69       0.58       0.50                                  | Velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21       1.48       1.63                                  | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26 2.99 3.57                | Froude  - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863 0.6285 0.7513               |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29 C34 C36 C37         | m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506 126.533 35.506 82.678                  | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.631 0.559 0.758              | yn  1.04  1.08  0.08  0.08  0.98  1.03  1.00  0.78  0.66  0.59  0.53             | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 3.67 3.38 4.22           | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41 0.32 0.30 0.28 0.21           | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69       0.58       0.50       0.31                       | velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21       1.48       1.63       2.53                       | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26 2.99 3.57 8.41           | - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863 0.6285 0.7513 1.1168                |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29 C34 C36 C37 C45     | Longitud  m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506 126.533 35.506 82.678 44.739 | Relación de llenado - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.740 0.631 0.559 0.758 0.392  | yn  1.04  1.08  0.08  0.08  0.98  1.03  1.00  0.78  0.66  0.59  0.53  0.08       | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 4.14 3.67 3.38 4.22 2.70 | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.32 0.30 0.28 0.21 0.04           | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69       0.58       0.50       0.31       0.01            | Velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21       1.48       1.63       2.53       0.89            | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26 2.99 3.57 8.41 1.70      | Froude  - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863 0.6285 0.7513 1.1168 1.1807 |
| Tubería  - C10 C16 C19 C22 C24 C25 C26 C29 C34 C36 C37 C45 C46 | m 102.984 262.402 57.988 54.488 81.006 96.136 105.574 115.506 126.533 35.506 82.678 44.739 33.463    | Relación de llenado  - 0.741 0.796 0.403 0.328 0.728 0.765 0.740 0.631 0.559 0.758 0.392 0.744 | yn  1.04  1.08  0.08  0.08  0.98  1.03  1.00  0.78  0.66  0.59  0.53  0.08  0.52 | Theta rad 4.15 4.41 2.75 2.44 4.09 4.26 4.14 3.67 3.38 4.22 2.70 4.16 | Radio  m 0.42 0.41 0.04 0.05 0.40 0.41 0.41 0.32 0.30 0.28 0.21 0.04 0.21 | Área       m2       1.22       1.22       0.01       0.01       1.12       1.17       1.14       0.69       0.58       0.50       0.31       0.01       0.31 | Velocidad       m/s       3.25       2.99       7.78       9.02       3.17       2.88       2.94       3.21       1.48       1.63       2.53       0.89       2.39 | tao  Kpa 12.04 10.33 87.44 113.46 11.56 9.67 10.04 12.26 2.99 3.57 8.41 1.70 7.60 | - 1.0410 0.9002 10.1177 11.7777 1.0513 0.9095 0.9588 1.1863 0.6285 0.7513 1.1168 1.1807 1.0761  |





| C55   | 36.170  | 0.596 | 0.42 | 3.53 | 0.19 | 0.24 | 2.34 | 7.41  | 1.2652 |
|-------|---------|-------|------|------|------|------|------|-------|--------|
| C56   | 100.801 | 0.650 | 0.13 | 3.75 | 0.06 | 0.02 | 1.53 | 4.23  | 1.4513 |
| C59   | 99.927  | 0.714 | 0.50 | 4.02 | 0.21 | 0.29 | 1.68 | 3.99  | 0.7882 |
| C89   | 61.581  | 0.343 | 0.07 | 2.50 | 0.04 | 0.01 | 0.79 | 1.38  | 1.1218 |
| C90   | 75.268  | 0.644 | 0.19 | 3.72 | 0.09 | 0.05 | 1.41 | 3.38  | 1.0997 |
| C93   | 103.753 | 0.580 | 0.12 | 3.46 | 0.05 | 0.02 | 0.97 | 1.86  | 0.9965 |
| C105  | 52.440  | 0.221 | 0.23 | 1.96 | 0.14 | 0.14 | 6.79 | 56.07 | 5.3737 |
| C106  | 83.957  | 0.726 | 0.76 | 4.08 | 0.31 | 0.67 | 1.59 | 3.38  | 0.6008 |
| C107  | 253.292 | 0.780 | 0.82 | 4.33 | 0.32 | 0.72 | 2.95 | 10.48 | 1.0315 |
| C118  | 102.721 | 0.692 | 0.73 | 3.93 | 0.31 | 0.64 | 1.28 | 2.25  | 0.5017 |
| C119  | 115.767 | 0.575 | 0.60 | 3.44 | 0.28 | 0.51 | 1.65 | 3.67  | 0.7496 |
| C120  | 79.308  | 0.737 | 0.77 | 4.13 | 0.32 | 0.68 | 1.31 | 2.34  | 0.4849 |
| C121  | 64.835  | 0.541 | 0.57 | 3.31 | 0.28 | 0.48 | 1.94 | 4.96  | 0.9167 |
| C122  | 101.555 | 0.751 | 0.79 | 4.19 | 0.32 | 0.70 | 1.36 | 2.51  | 0.4943 |
| C125  | 73.624  | 0.314 | 0.09 | 2.38 | 0.05 | 0.02 | 6.93 | 68.03 | 8.4744 |
| C126  | 61.068  | 0.679 | 0.20 | 3.87 | 0.09 | 0.05 | 1.85 | 5.52  | 1.3830 |
| C138  | 129.437 | 0.616 | 0.28 | 3.61 | 0.13 | 0.10 | 1.28 | 2.63  | 0.8408 |
| C139  | 82.843  | 0.639 | 0.26 | 3.71 | 0.11 | 0.08 | 0.97 | 1.63  | 0.6595 |
| C308  | 234.925 | 0.567 | 0.40 | 3.41 | 0.19 | 0.23 | 1.25 | 2.36  | 0.7014 |
| C309  | 154.527 | 0.582 | 0.35 | 3.47 | 0.16 | 0.17 | 1.15 | 2.08  | 0.6847 |
| C412  | 320.149 | 0.545 | 0.27 | 3.32 | 0.13 | 0.11 | 1.11 | 2.02  | 0.7551 |
| C1024 | 92.064  | 0.685 | 0.55 | 3.90 | 0.24 | 0.37 | 1.32 | 2.51  | 0.5995 |
| C1025 | 140.581 | 0.630 | 0.50 | 3.67 | 0.23 | 0.33 | 1.50 | 3.18  | 0.7268 |
| C1026 | 186.873 | 0.708 | 0.57 | 4.00 | 0.24 | 0.38 | 1.64 | 3.75  | 0.7256 |
| C1027 | 0.701   | 0.701 | 0.56 | 3.97 | 0.24 | 0.38 | 1.80 | 4.44  | 0.8034 |
| C1028 | 162.082 | 0.755 | 0.60 | 4.21 | 0.24 | 0.41 | 1.79 | 4.37  | 0.7439 |
| C1029 | 116.487 | 0.605 | 0.23 | 3.57 | 0.11 | 0.07 | 1.01 | 1.79  | 0.7360 |
| C1032 | 332.216 | 0.696 | 0.24 | 3.95 | 0.10 | 0.07 | 0.82 | 1.22  | 0.5563 |
| C1033 | 149.023 | 0.671 | 0.27 | 3.84 | 0.12 | 0.09 | 1.18 | 2.31  | 0.7701 |
| C1035 | 44.071  | 0.507 | 0.10 | 3.17 | 0.05 | 0.02 | 1.65 | 4.98  | 1.8632 |
| C1037 | 79.740  | 0.736 | 0.28 | 4.12 | 0.45 | 1.39 | 3.00 | 10.26 | 0.9333 |
| C1045 | 167.833 | 0.684 | 0.27 | 3.90 | 0.12 | 0.09 | 2.18 | 7.06  | 1.3989 |
| C1052 | 152.057 | 0.277 | 0.29 | 2.22 | 0.17 | 0.20 | 1.16 | 2.11  | 0.8148 |
| C1065 | 166.465 | 0.747 | 1.05 | 4.17 | 0.42 | 1.23 | 3.31 | 12.44 | 1.0511 |
| C1066 | 61.973  | 0.487 | 0.12 | 3.09 | 0.06 | 0.02 | 3.21 | 16.15 | 3.3300 |
| C60   | 148.844 | 0.783 | 0.63 | 4.35 | 0.24 | 0.42 | 1.97 | 5.19  | 0.7846 |
| C61   | 146.663 | 0.581 | 0.41 | 3.47 | 0.19 | 0.23 | 1.33 | 2.64  | 0.7326 |
| C76   | 105.978 | 0.367 | 0.07 | 2.60 | 0.04 | 0.01 | 1.03 | 2.22  | 1.4112 |





| C124         0.053         0.075         0.08         1.11         0.05         0.03         4.15         26.66         5.7189           C131         161.604         0.740         1.04         4.14         0.42         1.22         3.42         13.17         1.0933           C133         79.245         0.749         0.52         4.18         0.21         0.31         1.27         2.38         0.5680           C134         96.891         0.684         0.48         3.89         0.21         0.28         1.19         2.12         0.5793           C135         134.215         0.752         0.53         4.20         0.21         0.31         1.89         4.94         0.8428           C145         183.398         0.507         0.10         3.17         0.05         0.02         2.64         11.68         2.9788           C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557                                                                                                                                                                | C80  | 85.318  | 0.600 | 0.12 | 3.55 | 0.06 | 0.02 | 0.95 | 1.79  | 0.9562 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|------|------|------|------|------|-------|--------|
| C133         79.245         0.749         0.52         4.18         0.21         0.31         1.27         2.38         0.5680           C134         96.891         0.684         0.48         3.89         0.21         0.28         1.19         2.12         0.5793           C135         134.215         0.752         0.53         4.20         0.21         0.31         1.89         4.94         0.8428           C14         183.398         0.507         0.10         3.17         0.05         0.02         2.64         11.68         2.9788           C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25<                                                                                                                                                       | C124 | 0.053   | 0.075 | 0.08 | 1.11 | 0.05 | 0.03 | 4.15 | 26.66 | 5.7189 |
| C134         96.891         0.684         0.48         3.89         0.21         0.28         1.19         2.12         0.5793           C135         134.215         0.752         0.53         4.20         0.21         0.31         1.89         4.94         0.8428           C145         183.398         0.507         0.10         3.17         0.05         0.02         2.64         11.68         2.9788           C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28<                                                                                                                                                       | C131 | 161.604 | 0.740 | 1.04 | 4.14 | 0.42 | 1.22 | 3.42 | 13.17 | 1.0933 |
| C135         134.215         0.752         0.53         4.20         0.21         0.31         1.89         4.94         0.8428           C145         183.398         0.507         0.10         3.17         0.05         0.02         2.64         11.68         2.9788           C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27 </td <td>C133</td> <td>79.245</td> <td>0.749</td> <td>0.52</td> <td>4.18</td> <td>0.21</td> <td>0.31</td> <td>1.27</td> <td>2.38</td> <td>0.5680</td>   | C133 | 79.245  | 0.749 | 0.52 | 4.18 | 0.21 | 0.31 | 1.27 | 2.38  | 0.5680 |
| C145         183.398         0.507         0.10         3.17         0.05         0.02         2.64         11.68         2.9788           C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         38.711         0.686         0.27         3.90         0.12         0.09         3.76         4.63         16.57         2.232           C12         139.209         0.549 <td>C134</td> <td>96.891</td> <td>0.684</td> <td>0.48</td> <td>3.89</td> <td>0.21</td> <td>0.28</td> <td>1.19</td> <td>2.12</td> <td>0.5793</td>         | C134 | 96.891  | 0.684 | 0.48 | 3.89 | 0.21 | 0.28 | 1.19 | 2.12  | 0.5793 |
| C1         165.186         0.682         0.14         3.89         0.06         0.02         0.87         1.52         0.7937           C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23 <td>C135</td> <td>134.215</td> <td>0.752</td> <td>0.53</td> <td>4.20</td> <td>0.21</td> <td>0.31</td> <td>1.89</td> <td>4.94</td> <td>0.8428</td>        | C135 | 134.215 | 0.752 | 0.53 | 4.20 | 0.21 | 0.31 | 1.89 | 4.94  | 0.8428 |
| C3         116.158         0.550         0.39         3.34         0.19         0.22         1.36         2.76         0.7773           C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63 </td <td>C145</td> <td>183.398</td> <td>0.507</td> <td>0.10</td> <td>3.17</td> <td>0.05</td> <td>0.02</td> <td>2.64</td> <td>11.68</td> <td>2.9788</td> | C145 | 183.398 | 0.507 | 0.10 | 3.17 | 0.05 | 0.02 | 2.64 | 11.68 | 2.9788 |
| C4         175.949         0.557         0.17         3.37         0.08         0.04         0.87         1.41         0.7504           C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35<                                                                                                                                                       | C1   | 165.186 | 0.682 | 0.14 | 3.89 | 0.06 | 0.02 | 0.87 | 1.52  | 0.7937 |
| C5         261.349         0.751         0.53         4.19         0.21         0.31         1.49         3.17         0.6626           C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59                                                                                                                                                       | C3   | 116.158 | 0.550 | 0.39 | 3.34 | 0.19 | 0.22 | 1.36 | 2.76  | 0.7773 |
| C7         186.588         0.651         0.25         3.75         0.11         0.08         1.17         2.30         0.8047           C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.4                                                                                                                                                       | C4   | 175.949 | 0.557 | 0.17 | 3.37 | 0.08 | 0.04 | 0.87 | 1.41  | 0.7504 |
| C9         124.951         0.690         0.28         3.92         0.12         0.09         1.73         4.63         1.1033           C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.                                                                                                                                                       | C5   | 261.349 | 0.751 | 0.53 | 4.19 | 0.21 | 0.31 | 1.49 | 3.17  | 0.6626 |
| C11         88.711         0.686         0.27         3.90         0.12         0.09         3.46         16.57         2.2232           C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0                                                                                                                                                       | C7   | 186.588 | 0.651 | 0.25 | 3.75 | 0.11 | 0.08 | 1.17 | 2.30  | 0.8047 |
| C12         139.209         0.549         0.22         3.34         0.11         0.07         4.97         32.83         3.7672           C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0                                                                                                                                                       | C9   | 124.951 | 0.690 | 0.28 | 3.92 | 0.12 | 0.09 | 1.73 | 4.63  | 1.1033 |
| C31         151.832         0.222         0.23         1.96         0.14         0.14         1.30         2.69         1.0289           C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.                                                                                                                                                       | C11  | 88.711  | 0.686 | 0.27 | 3.90 | 0.12 | 0.09 | 3.46 | 16.57 | 2.2232 |
| C32         436.439         0.783         0.63         4.34         0.24         0.42         2.27         6.74         0.9053           C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0                                                                                                                                                       | C12  | 139.209 | 0.549 | 0.22 | 3.34 | 0.11 | 0.07 | 4.97 | 32.83 | 3.7672 |
| C33         253.964         0.504         0.35         3.16         0.18         0.19         1.23         2.30         0.7427           C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219                                                                                                                                                                | C31  | 151.832 | 0.222 | 0.23 | 1.96 | 0.14 | 0.14 | 1.30 | 2.69  | 1.0289 |
| C35         195.005         0.741         0.59         4.15         0.24         0.40         2.30         6.91         0.9720           C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617                                                                                                                                                                | C32  | 436.439 | 0.783 | 0.63 | 4.34 | 0.24 | 0.42 | 2.27 | 6.74  | 0.9053 |
| C38         105.061         0.698         0.49         3.96         0.21         0.29         1.80         4.51         0.8582           C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563 <td< td=""><td>C33</td><td>253.964</td><td>0.504</td><td>0.35</td><td>3.16</td><td>0.18</td><td>0.19</td><td>1.23</td><td>2.30</td><td>0.7427</td></td<>      | C33  | 253.964 | 0.504 | 0.35 | 3.16 | 0.18 | 0.19 | 1.23 | 2.30  | 0.7427 |
| C39         104.309         0.540         0.11         3.30         0.05         0.02         1.03         2.12         1.1193           C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734                                                                                                                                                                | C35  | 195.005 | 0.741 | 0.59 | 4.15 | 0.24 | 0.40 | 2.30 | 6.91  | 0.9720 |
| C40         315.673         0.803         0.84         4.44         0.32         0.75         1.23         2.09         0.4157           C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                           | C38  | 105.061 | 0.698 | 0.49 | 3.96 | 0.21 | 0.29 | 1.80 | 4.51  | 0.8582 |
| C41         169.668         0.738         0.89         4.13         0.36         0.89         2.64         8.35         0.9135           C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                                                                                                                                                                    | C39  | 104.309 | 0.540 | 0.11 | 3.30 | 0.05 | 0.02 | 1.03 | 2.12  | 1.1193 |
| C42         157.863         0.529         0.13         3.26         0.06         0.03         3.10         14.99         3.0441           C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C40  | 315.673 | 0.803 | 0.84 | 4.44 | 0.32 | 0.75 | 1.23 | 2.09  | 0.4157 |
| C43         153.468         0.697         0.14         3.95         0.06         0.02         3.30         17.12         2.9581           C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C41  | 169.668 | 0.738 | 0.89 | 4.13 | 0.36 | 0.89 | 2.64 | 8.35  | 0.9135 |
| C44         232.086         0.219         0.23         1.95         0.14         0.14         1.14         2.12         0.9076           C48         155.987         0.617         0.28         3.62         0.13         0.10         3.85         19.88         2.5315           C49         207.066         0.563         0.59         3.40         0.28         0.50         1.40         2.71         0.6436           C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C42  | 157.863 | 0.529 | 0.13 | 3.26 | 0.06 | 0.03 | 3.10 | 14.99 | 3.0441 |
| C48     155.987     0.617     0.28     3.62     0.13     0.10     3.85     19.88     2.5315       C49     207.066     0.563     0.59     3.40     0.28     0.50     1.40     2.71     0.6436       C50     80.265     0.734     1.10     4.11     0.45     1.39     3.12     11.01     0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C43  | 153.468 | 0.697 | 0.14 | 3.95 | 0.06 | 0.02 | 3.30 | 17.12 | 2.9581 |
| C49     207.066     0.563     0.59     3.40     0.28     0.50     1.40     2.71     0.6436       C50     80.265     0.734     1.10     4.11     0.45     1.39     3.12     11.01     0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C44  | 232.086 | 0.219 | 0.23 | 1.95 | 0.14 | 0.14 | 1.14 | 2.12  | 0.9076 |
| C50         80.265         0.734         1.10         4.11         0.45         1.39         3.12         11.01         0.9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C48  | 155.987 | 0.617 | 0.28 | 3.62 | 0.13 | 0.10 | 3.85 | 19.88 | 2.5315 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C49  | 207.066 | 0.563 | 0.59 | 3.40 | 0.28 | 0.50 | 1.40 | 2.71  | 0.6436 |
| C53         42.263         0.699         0.94         3.96         0.40         1.07         4.09         18.56         1.4058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C50  | 80.265  | 0.734 | 1.10 | 4.11 | 0.45 | 1.39 | 3.12 | 11.01 | 0.9726 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C53  | 42.263  | 0.699 | 0.94 | 3.96 | 0.40 | 1.07 | 4.09 | 18.56 | 1.4058 |

# 9.2 Cuenca Nororiental

Tabla 13 Diseños de la cuenca nororiental

| Tubería In Out | Batea<br>inicial | Batea Excavación<br>final inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|----------------|------------------|-----------------------------------|---------------------|------------------------|-----------|
|----------------|------------------|-----------------------------------|---------------------|------------------------|-----------|





| -       | -        | -                      | m    | m       | m       | m    | m         | m³/s  | -      |
|---------|----------|------------------------|------|---------|---------|------|-----------|-------|--------|
| C407    | n373     | n374                   | 0.30 | 2576.84 | 2576.59 | 1.50 | 1.70      | 0.08  | 0.0072 |
| C408    | n375     | n374                   | 0.20 | 2577.26 | 2576.89 | 1.40 | 1.40      | 0.03  | 0.0072 |
| C409    | n374     | n376                   | 0.35 | 2576.59 | 2576.13 | 1.70 | 1.60      | 0.13  | 0.0057 |
| C422    | n453     | n452                   | 0.30 | 2579.25 | 2578.84 | 1.50 | 1.50      | 0.09  | 0.0111 |
| C423    | n452     | n449                   | 0.38 | 2578.84 | 2578.56 | 1.50 | 1.60      | 0.11  | 0.0028 |
| C424    | n449     | n448                   | 0.38 | 2578.56 | 2578.34 | 1.60 | 1.70      | 0.14  | 0.0045 |
| C425    | n448     | n398                   | 0.45 | 2578.34 | 2578.20 | 1.70 | 1.70      | 0.17  | 0.0030 |
| C429    | n455     | n448                   | 0.20 | 2580.96 | 2578.64 | 1.40 | 1.40      | 0.02  | 0.0554 |
| C452    | n380     | n381                   | 0.53 | 2574.74 | 2574.05 | 2.20 | 2.30      | 0.59  | 0.0116 |
| C467    | n2312    | n2311                  | 0.25 | 2568.82 | 2567.54 | 1.86 | 2.78      | 0.06  | 0.0196 |
| C468    | n2313    | n2312                  | 0.25 | 2569.28 | 2568.82 | 1.88 | 1.86      | 0.05  | 0.0052 |
| C1093   | n376     | n378                   | 0.40 | 2576.13 | 2575.85 | 1.60 | 1.60      | 0.15  | 0.0040 |
| C175    | n409     | n406                   | 0.30 | 2579.91 | 2579.57 | 1.50 | 1.50      | 0.05  | 0.0032 |
| C176    | n406     | n404                   | 0.30 | 2579.57 | 2578.97 | 1.50 | 1.70      | 0.08  | 0.0047 |
| C177    | n404     | n402                   | 0.38 | 2578.97 | 2578.64 | 1.70 | 1.60      | 0.13  | 0.0036 |
| C179    | n402     | n398                   | 0.40 | 2578.64 | 2578.10 | 1.60 | 1.80      | 0.15  | 0.0040 |
| C180    | n398     | n390                   | 0.50 | 2578.10 | 2577.25 | 1.80 | 2.10      | 0.33  | 0.0053 |
| C181    | n390     | n378                   | 0.50 | 2577.25 | 2575.75 | 2.10 | 1.70      | 0.38  | 0.0084 |
| C188    | n451     | n449                   | 0.20 | 2579.13 | 2578.76 | 1.40 | 1.40      | 0.02  | 0.0054 |
| C189    | n378     | n380                   | 0.53 | 2575.75 | 2574.74 | 1.70 | 2.20      | 0.56  | 0.0106 |
| C190    | n371     | n373                   | 0.25 | 2577.28 | 2576.84 | 1.50 | 1.50      | 0.04  | 0.0041 |
| C196    | n381     | n386                   | 0.53 | 2574.05 | 2572.14 | 2.30 | 3.40      | 0.59  | 0.0111 |
| C13     | n459     | n386                   | 0.20 | 2577.39 | 2574.14 | 1.40 | 1.40      | 0.05  | 0.0363 |
| C1      | n2311    | N1                     | 0.20 | 2569.77 | 2569.28 | 0.56 | -0.24     | 0.01  | 0.0054 |
| C2      | n386     | N1                     | 0.53 | 2572.14 | 2567.24 | 3.40 | 1.80      | 0.66  | 0.0416 |
| C3      | N1       | S7                     | 0.60 | 2567.24 | 2565.40 | 1.80 | 3.40      | 0.72  | 0.0091 |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta   | Radio   | Área | Velocidad | tao   | Froude |
| -       | m        | -                      | m    | rad     | m       | m2   | m/s       | Кра   | •      |
| C407    | 34.554   | 0.579                  | 0.17 | 3.46    | 0.08    | 0.04 | 1.88      | 5.78  | 1.5885 |
| C408    | 51.674   | 0.570                  | 0.11 | 3.42    | 0.05    | 0.02 | 1.44      | 3.84  | 1.5051 |
| C409    | 80.445   | 0.655                  | 0.23 | 3.77    | 0.10    | 0.07 | 1.90      | 5.68  | 1.3562 |
| C422    | 36.630   | 0.524                  | 0.16 | 3.24    | 0.08    | 0.04 | 2.30      | 8.40  | 2.0729 |
| C423    | 100.684  | 0.654                  | 0.25 | 3.77    | 0.11    | 0.08 | 1.36      | 3.04  | 0.9328 |
| C424    | 49.486   | 0.650                  | 0.25 | 3.75    | 0.11    | 0.08 | 1.76      | 4.86  | 1.2124 |
| C425    | 44.747   | 0.634                  | 0.29 | 3.69    | 0.13    | 0.11 | 1.56      | 3.77  | 1.0033 |
| C429    | 42.006   | 0.282                  | 0.06 | 2.24    | 0.03    | 0.01 | 3.17      | 17.67 | 5.0266 |





| ı     | 1       | i     | ı    | i    | i    | i    | i    | 1     | 1      |
|-------|---------|-------|------|------|------|------|------|-------|--------|
| C452  | 59.277  | 0.681 | 0.36 | 3.88 | 0.16 | 0.16 | 3.68 | 17.68 | 2.0643 |
| C467  | 65.330  | 0.478 | 0.12 | 3.05 | 0.06 | 0.02 | 2.68 | 11.66 | 2.8144 |
| C468  | 89.103  | 0.649 | 0.16 | 3.75 | 0.07 | 0.03 | 1.45 | 3.68  | 1.2315 |
| C1093 | 70.095  | 0.660 | 0.26 | 3.79 | 0.12 | 0.09 | 1.72 | 4.59  | 1.1382 |
| C175  | 107.307 | 0.570 | 0.17 | 3.42 | 0.08 | 0.04 | 1.19 | 2.52  | 1.0170 |
| C176  | 127.160 | 0.669 | 0.20 | 3.83 | 0.09 | 0.05 | 1.56 | 4.05  | 1.1807 |
| C177  | 91.850  | 0.698 | 0.27 | 3.96 | 0.11 | 0.08 | 1.58 | 3.98  | 1.0264 |
| C179  | 133.861 | 0.663 | 0.27 | 3.81 | 0.12 | 0.09 | 1.71 | 4.57  | 1.1316 |
| C180  | 160.583 | 0.679 | 0.34 | 3.87 | 0.15 | 0.14 | 2.32 | 7.62  | 1.3414 |
| C181  | 178.252 | 0.626 | 0.31 | 3.65 | 0.14 | 0.13 | 2.92 | 11.74 | 1.8039 |
| C188  | 68.720  | 0.479 | 0.10 | 3.06 | 0.05 | 0.01 | 1.14 | 2.58  | 1.3395 |
| C189  | 95.437  | 0.685 | 0.36 | 3.90 | 0.16 | 0.16 | 3.50 | 16.15 | 1.9555 |
| C190  | 106.822 | 0.571 | 0.14 | 3.42 | 0.07 | 0.03 | 1.23 | 2.74  | 1.1447 |
| C196  | 172.859 | 0.698 | 0.37 | 3.96 | 0.16 | 0.16 | 3.61 | 17.01 | 1.9797 |
| C13   | 89.464  | 0.462 | 0.09 | 2.99 | 0.05 | 0.01 | 3.21 | 16.92 | 3.8454 |
| C1    | 88.773  | 0.422 | 0.08 | 2.83 | 0.04 | 0.01 | 1.08 | 2.37  | 1.3658 |
| C2    | 117.846 | 0.470 | 0.25 | 3.02 | 0.13 | 0.10 | 6.48 | 51.96 | 4.7084 |
| C3    | 201.972 | 0.687 | 0.41 | 3.91 | 0.18 | 0.21 | 3.50 | 15.79 | 1.8317 |

# 9.3 Cuenca Nororiental 2

Tabla 14 Diseños de la cuenca nororiental 2

| Tubería | In    | Out   | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|-------|-------|------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -     | -     | m    | m                | m              | m                     | m                   | m³/s                   | -         |
| C370    | n516  | n517  | 0.25 | 2579.11          | 2578.85        | 1.50                  | 1.50                | 0.06                   | 0.0082    |
| C374    | n517  | n518  | 0.30 | 2578.85          | 2578.61        | 1.50                  | 1.60                | 0.11                   | 0.0111    |
| C375    | n518  | n519  | 0.35 | 2578.61          | 2578.38        | 1.60                  | 1.70                | 0.12                   | 0.0053    |
| C376    | n519  | n520  | 0.35 | 2578.38          | 2577.86        | 1.70                  | 1.60                | 0.14                   | 0.0065    |
| C379    | n2000 | n1999 | 0.20 | 2579.23          | 2577.93        | 1.40                  | 1.40                | 0.01                   | 0.0127    |
| C380    | n1999 | n2001 | 0.45 | 2576.83          | 2576.52        | 2.50                  | 3.00                | 0.23                   | 0.0053    |
| C381    | n2001 | n2002 | 0.45 | 2576.52          | 2575.92        | 3.00                  | 2.40                | 0.27                   | 0.0067    |
| C385    | n2005 | n2010 | 0.45 | 2571.96          | 2571.33        | 1.70                  | 1.70                | 0.39                   | 0.0156    |
| C386    | n2010 | n2011 | 0.45 | 2571.33          | 2570.35        | 1.70                  | 1.80                | 0.40                   | 0.0125    |
| C391    | n2008 | n2007 | 0.20 | 2576.77          | 2576.07        | 1.40                  | 1.40                | 0.04                   | 0.0106    |
| C396    | n523  | n1999 | 0.45 | 2577.03          | 2576.83        | 2.50                  | 2.50                | 0.21                   | 0.0062    |





| C397    | n522     | n523                   | 0.45 | 2577.37 | 2577.03 | 1.60 | 2.50      | 0.20  | 0.0038 |
|---------|----------|------------------------|------|---------|---------|------|-----------|-------|--------|
| C164    | n514     | n516                   | 0.25 | 2579.55 | 2579.11 | 1.40 | 1.50      | 0.04  | 0.0043 |
| C166    | n528     | n514                   | 0.20 | 2580.16 | 2579.55 | 1.40 | 1.40      | 0.02  | 0.0091 |
| C192    | n520     | n522                   | 0.38 | 2577.86 | 2577.37 | 1.60 | 1.60      | 0.16  | 0.0060 |
| C193    | n2011    | n2314                  | 0.45 | 2570.35 | 2569.66 | 1.80 | 2.20      | 0.41  | 0.0142 |
| C224    | n2007    | n2005                  | 0.20 | 2576.07 | 2572.26 | 1.40 | 1.40      | 0.05  | 0.0335 |
| C228    | n2002    | n2005                  | 0.45 | 2575.92 | 2571.96 | 2.40 | 1.70      | 0.31  | 0.0352 |
| C12     | n525     | n517                   | 0.20 | 2581.04 | 2578.95 | 1.40 | 1.40      | 0.03  | 0.0117 |
| C194    | n2314    | S6                     | 0.45 | 2569.66 | 2568.76 | 2.20 | 3.00      | 0.42  | 0.0138 |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta   | Radio   | Área | Velocidad | tao   | Froude |
| -       | m        | -                      | m    | rad     | m       | m2   | m/s       | Кра   | -      |
| C370    | 31.617   | 0.644                  | 0.16 | 3.72    | 0.07    | 0.03 | 1.86      | 5.79  | 1.5896 |
| C374    | 22.325   | 0.616                  | 0.18 | 3.61    | 0.08    | 0.05 | 2.43      | 9.16  | 1.9598 |
| C375    | 41.835   | 0.646                  | 0.23 | 3.73    | 0.10    | 0.07 | 1.82      | 5.26  | 1.3146 |
| C376    | 79.777   | 0.680                  | 0.24 | 3.88    | 0.10    | 0.07 | 2.06      | 6.55  | 1.4245 |
| C379    | 102.748  | 0.336                  | 0.07 | 2.47    | 0.04    | 0.01 | 1.55      | 4.68  | 2.2272 |
| C380    | 57.701   | 0.647                  | 0.29 | 3.74    | 0.13    | 0.11 | 2.14      | 6.71  | 1.3552 |
| C381    | 89.527   | 0.653                  | 0.29 | 3.76    | 0.13    | 0.11 | 2.43      | 8.51  | 1.5321 |
| C385    | 40.271   | 0.616                  | 0.28 | 3.61    | 0.13    | 0.10 | 3.79      | 19.37 | 2.4986 |
| C386    | 78.300   | 0.689                  | 0.31 | 3.91    | 0.13    | 0.12 | 3.46      | 16.21 | 2.0866 |
| C391    | 66.096   | 0.634                  | 0.13 | 3.69    | 0.06    | 0.02 | 1.84      | 5.92  | 1.7776 |
| C396    | 32.256   | 0.568                  | 0.26 | 3.42    | 0.12    | 0.09 | 2.24      | 7.39  | 1.5609 |
| C397    | 89.896   | 0.660                  | 0.30 | 3.79    | 0.13    | 0.11 | 1.78      | 4.82  | 1.1144 |
| C164    | 103.396  | 0.570                  | 0.14 | 3.42    | 0.07    | 0.03 | 1.25      | 2.83  | 1.1644 |
| C166    | 66.762   | 0.421                  | 0.08 | 2.83    | 0.04    | 0.01 | 1.43      | 3.96  | 1.8159 |
| C192    | 83.778   | 0.661                  | 0.25 | 3.80    | 0.11    | 0.08 | 2.06      | 6.43  | 1.3962 |
| C193    | 48.546   | 0.662                  | 0.30 | 3.80    | 0.13    | 0.11 | 3.68      | 18.19 | 2.2912 |
| C224    | 113.928  | 0.528                  | 0.11 | 3.25    | 0.05    | 0.02 | 3.25      | 16.98 | 3.5717 |
| C228    | 112.755  | 0.408                  | 0.18 | 2.77    | 0.10    | 0.06 | 5.01      | 33.77 | 4.3097 |
| C12     | 178.371  | 0.569                  | 0.11 | 3.42    | 0.05    | 0.02 | 1.87      | 6.19  | 1.9600 |
| C194    | 65.802   | 0.678                  | 0.31 | 3.87    | 0.13    | 0.11 | 3.64      | 17.79 | 2.2221 |





## 9.4 Cuenca Nororiental 3

Tabla 15 Diseños de la cuenca nororiental 3

| Tubería | In    | Out   | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|-------|-------|------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -     | -     | m    | m                | m              | m                     | m                   | m³/s                   | -         |
| C165    | n344  | n343  | 0.20 | 2585.81          | 2585.17        | 1.40                  | 1.40                | 0.01                   | 0.0120    |
| C171    | n341  | n340  | 0.30 | 2584.76          | 2584.43        | 1.50                  | 2.20                | 0.07                   | 0.0037    |
| C174    | n354  | n1    | 0.25 | 2582.62          | 2582.50        | 1.50                  | 1.50                | 0.03                   | 0.0016    |
| C183    | n367  | n667  | 0.20 | 2585.82          | 2585.38        | 1.40                  | 1.40                | 0.02                   | 0.0055    |
| C207    | n359  | n358  | 0.20 | 2584.60          | 2584.39        | 1.40                  | 1.40                | 0.02                   | 0.0029    |
| C216    | n2215 | n685  | 0.20 | 2585.90          | 2583.64        | 1.40                  | 1.40                | 0.02                   | 0.0366    |
| C217    | n685  | n682  | 0.25 | 2583.64          | 2583.23        | 1.40                  | 1.50                | 0.05                   | 0.0065    |
| C234    | n664  | n663  | 0.60 | 2581.09          | 2580.80        | 1.70                  | 2.40                | 0.34                   | 0.0027    |
| C239    | n663  | n662  | 0.60 | 2580.80          | 2580.45        | 2.40                  | 2.20                | 0.39                   | 0.0033    |
| C255    | n695  | n628  | 0.38 | 2581.42          | 2579.21        | 1.60                  | 1.60                | 0.19                   | 0.0071    |
| C282    | n634  | n633  | 0.70 | 2578.94          | 2578.77        | 2.10                  | 2.00                | 0.68                   | 0.0046    |
| C304    | n628  | n627  | 0.80 | 2578.01          | 2577.78        | 2.80                  | 2.90                | 1.04                   | 0.0032    |
| C305    | n627  | n626  | 0.80 | 2577.78          | 2577.45        | 2.90                  | 3.10                | 1.09                   | 0.0037    |
| C306    | n626  | n484  | 0.80 | 2577.45          | 2576.99        | 3.10                  | 2.50                | 1.18                   | 0.0048    |
| C311    | n488  | n489  | 0.80 | 2576.54          | 2575.92        | 2.00                  | 2.30                | 1.76                   | 0.0082    |
| C312    | n489  | n490  | 0.80 | 2575.92          | 2574.78        | 2.30                  | 2.70                | 1.77                   | 0.0086    |
| C314    | n2224 | n490  | 0.20 | 2576.20          | 2576.08        | 1.40                  | 1.40                | 0.02                   | 0.0025    |
| C327    | n501  | n500  | 0.40 | 2576.27          | 2575.95        | 3.50                  | 3.60                | 0.23                   | 0.0103    |
| C328    | n502  | n501  | 0.40 | 2576.77          | 2576.27        | 3.30                  | 3.50                | 0.22                   | 0.0079    |
| C347    | n445  | n444  | 0.20 | 2581.32          | 2579.55        | 1.40                  | 1.40                | 0.05                   | 0.0255    |
| C353    | n512  | n507  | 0.20 | 2579.35          | 2577.61        | 1.50                  | 1.40                | 0.04                   | 0.0262    |
| C354    | n513  | n512  | 0.20 | 2579.76          | 2579.35        | 1.40                  | 1.50                | 0.03                   | 0.0056    |
| C355    | n507  | n506  | 0.38 | 2577.51          | 2577.31        | 1.50                  | 3.00                | 0.18                   | 0.0062    |
| C359    | n511  | n510  | 0.20 | 2578.82          | 2576.23        | 1.40                  | 1.40                | 0.03                   | 0.0601    |
| C832    | n2162 | n2167 | 0.50 | 2589.80          | 2587.14        | 1.80                  | 1.70                | 0.42                   | 0.0080    |
| C949    | n2142 | n2139 | 0.53 | 2582.66          | 2580.66        | 1.70                  | 2.80                | 0.52                   | 0.0092    |
| C959    | n2139 | n484  | 0.53 | 2580.66          | 2577.69        | 2.80                  | 1.80                | 0.55                   | 0.0323    |
| C1055   | n2153 | n2156 | 0.30 | 2594.32          | 2590.35        | 1.50                  | 1.50                | 0.12                   | 0.0113    |
| C1056   | n2156 | n2162 | 0.50 | 2590.35          | 2589.80        | 1.50                  | 1.80                | 0.25                   | 0.0030    |
| C1067   | n667  | n337  | 0.25 | 2585.38          | 2585.04        | 1.40                  | 1.70                | 0.05                   | 0.0043    |





| C1069 | n1    | n671  | 0.45 | 2582.40 | 2581.80 | 1.60 | 1.70 | 0.25 | 0.0055 |
|-------|-------|-------|------|---------|---------|------|------|------|--------|
| C1070 | n671  | n664  | 0.50 | 2581.60 | 2581.09 | 1.90 | 1.70 | 0.29 | 0.0048 |
| C1071 | n682  | n680  | 0.30 | 2583.23 | 2582.75 | 1.50 | 1.50 | 0.06 | 0.0046 |
| C1072 | n680  | n693  | 0.35 | 2582.75 | 2582.27 | 1.50 | 1.60 | 0.11 | 0.0044 |
| C1076 | n649  | n662  | 0.20 | 2581.87 | 2581.25 | 1.40 | 1.40 | 0.02 | 0.0069 |
| C1077 | n346  | n343  | 0.20 | 2586.17 | 2585.17 | 1.40 | 1.40 | 0.02 | 0.0177 |
| C1084 | n633  | n630  | 0.80 | 2578.77 | 2578.53 | 2.00 | 3.10 | 0.76 | 0.0018 |
| C1085 | n421  | n633  | 0.20 | 2580.89 | 2579.37 | 1.40 | 1.40 | 0.04 | 0.0125 |
| C1087 | n444  | n446  | 0.30 | 2579.55 | 2578.96 | 1.40 | 1.80 | 0.11 | 0.0076 |
| C1098 | n484  | n488  | 0.80 | 2576.99 | 2576.54 | 2.50 | 2.00 | 1.75 | 0.0088 |
| C1142 | n492  | n494  | 0.90 | 2574.31 | 2573.94 | 2.50 | 2.30 | 1.81 | 0.0053 |
| C63   | n343  | n341  | 0.20 | 2585.17 | 2584.76 | 1.40 | 1.50 | 0.04 | 0.0093 |
| C68   | n340  | n337  | 0.35 | 2584.43 | 2584.04 | 2.20 | 2.70 | 0.10 | 0.0040 |
| C69   | n337  | n1    | 0.35 | 2584.04 | 2582.40 | 2.70 | 1.60 | 0.18 | 0.0181 |
| C149  | n435  | n444  | 0.20 | 2580.67 | 2579.55 | 1.40 | 1.40 | 0.03 | 0.0101 |
| C153  | n446  | n507  | 0.30 | 2578.96 | 2577.51 | 1.80 | 1.50 | 0.13 | 0.0141 |
| C154  | n508  | n510  | 0.20 | 2579.85 | 2576.23 | 1.40 | 1.40 | 0.03 | 0.0240 |
| C155  | n530  | n510  | 0.20 | 2577.65 | 2576.23 | 1.40 | 1.40 | 0.02 | 0.0078 |
| C158  | n506  | n502  | 0.40 | 2577.31 | 2576.77 | 3.00 | 3.30 | 0.19 | 0.0057 |
| C159  | n494  | n497  | 0.90 | 2573.94 | 2573.11 | 2.30 | 2.50 | 2.09 | 0.0068 |
| C160  | n497  | n2210 | 0.90 | 2573.11 | 2572.36 | 2.50 | 2.70 | 2.10 | 0.0070 |
| C161  | n490  | n492  | 0.90 | 2574.78 | 2574.31 | 2.70 | 2.50 | 1.80 | 0.0062 |
| C162  | n2210 | n2212 | 0.80 | 2572.16 | 2571.30 | 2.90 | 3.20 | 2.12 | 0.0111 |
| C167  | n503  | n500  | 0.20 | 2580.32 | 2578.15 | 1.40 | 1.40 | 0.02 | 0.0230 |
| C168  | n500  | n494  | 0.40 | 2575.95 | 2574.64 | 3.60 | 1.60 | 0.27 | 0.0167 |
| C169  | n2167 | n2142 | 0.50 | 2587.14 | 2582.66 | 1.70 | 1.70 | 0.46 | 0.0209 |
| C2    | n433  | n627  | 0.20 | 2580.76 | 2579.28 | 1.40 | 1.40 | 0.03 | 0.0091 |
| C3    | n689  | n1    | 0.20 | 2583.75 | 2582.60 | 1.40 | 1.40 | 0.02 | 0.0072 |
| C4    | n679  | n671  | 0.20 | 2582.64 | 2582.00 | 1.40 | 1.50 | 0.02 | 0.0037 |
| C5    | n655  | n663  | 0.20 | 2582.27 | 2581.70 | 1.40 | 1.50 | 0.02 | 0.0035 |
| C6    | n334  | n662  | 0.30 | 2581.22 | 2581.05 | 1.50 | 1.60 | 0.04 | 0.0019 |
| C7    | n662  | n634  | 0.60 | 2580.45 | 2579.14 | 2.20 | 1.90 | 0.48 | 0.0042 |
| C9    | n358  | n680  | 0.20 | 2584.39 | 2582.85 | 1.40 | 1.40 | 0.04 | 0.0104 |
| C10   | n693  | n695  | 0.38 | 2582.27 | 2581.42 | 1.60 | 1.60 | 0.15 | 0.0050 |
| C11   | n630  | n628  | 0.80 | 2578.33 | 2578.01 | 3.30 | 2.80 | 0.84 | 0.0022 |
| C1    | n676  | n664  | 0.20 | 2582.89 | 2581.39 | 1.40 | 1.40 | 0.02 | 0.0083 |





| C8      | n510     | N41                    | 0.30 | 2576.23 | 2572.80 | 1.40 | 1.50      | 0.11  | 0.0132 |
|---------|----------|------------------------|------|---------|---------|------|-----------|-------|--------|
| C12     | n2212    | N41                    | 0.90 | 2571.30 | 2570.50 | 3.20 | 3.80      | 2.15  | 0.0073 |
| C13     | n658     | n2213                  | 0.35 | 2581.11 | 2580.41 | 1.60 | 2.10      | 0.13  | 0.0053 |
| C14     | n415     | n2213                  | 0.25 | 2581.32 | 2580.91 | 1.50 | 1.60      | 0.03  | 0.0027 |
| C15     | n2213    | n634                   | 0.35 | 2580.41 | 2579.44 | 2.10 | 1.60      | 0.19  | 0.0212 |
| C16     | N41      | S8                     | 0.90 | 2570.50 | 2570.10 | 3.80 | 3.90      | 2.28  | 0.0079 |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta   | Radio   | Área | Velocidad | tao   | Froude |
| -       | m        | -                      | m    | rad     | m       | m2   | m/s       | Кра   | -      |
| C165    | 53.361   | 0.331                  | 0.07 | 2.45    | 0.04    | 0.01 | 1.48      | 4.36  | 2.1589 |
| C171    | 91.882   | 0.688                  | 0.21 | 3.91    | 0.09    | 0.05 | 1.36      | 3.17  | 1.0089 |
| C174    | 79.456   | 0.695                  | 0.17 | 3.94    | 0.07    | 0.04 | 0.76      | 1.13  | 0.6091 |
| C183    | 80.029   | 0.565                  | 0.11 | 3.40    | 0.05    | 0.02 | 1.23      | 2.90  | 1.2969 |
| C207    | 74.764   | 0.608                  | 0.12 | 3.58    | 0.06    | 0.02 | 0.88      | 1.58  | 0.8826 |
| C216    | 61.770   | 0.325                  | 0.06 | 2.42    | 0.04    | 0.01 | 2.72      | 13.10 | 3.9943 |
| C217    | 63.064   | 0.599                  | 0.15 | 3.54    | 0.07    | 0.03 | 1.60      | 4.41  | 1.4409 |
| C234    | 109.708  | 0.650                  | 0.39 | 3.75    | 0.17    | 0.19 | 1.77      | 4.51  | 0.9680 |
| C239    | 106.325  | 0.653                  | 0.39 | 3.76    | 0.17    | 0.20 | 2.00      | 5.64  | 1.0893 |
| C255    | 311.180  | 0.676                  | 0.26 | 3.86    | 0.11    | 0.08 | 2.27      | 7.74  | 1.5159 |
| C282    | 36.731   | 0.642                  | 0.45 | 3.72    | 0.20    | 0.26 | 2.63      | 9.11  | 1.3445 |
| C304    | 72.183   | 0.795                  | 0.64 | 4.40    | 0.24    | 0.43 | 2.44      | 7.70  | 0.9565 |
| C305    | 90.494   | 0.773                  | 0.62 | 4.30    | 0.24    | 0.42 | 2.62      | 8.78  | 1.0592 |
| C306    | 94.257   | 0.729                  | 0.58 | 4.09    | 0.24    | 0.39 | 3.01      | 11.41 | 1.2944 |
| C311    | 75.512   | 0.811                  | 0.65 | 4.48    | 0.24    | 0.44 | 4.03      | 19.48 | 1.5415 |
| C312    | 132.744  | 0.791                  | 0.63 | 4.39    | 0.24    | 0.43 | 4.15      | 20.58 | 1.6361 |
| C314    | 49.029   | 0.592                  | 0.12 | 3.51    | 0.06    | 0.02 | 0.81      | 1.36  | 0.8266 |
| C327    | 31.260   | 0.614                  | 0.25 | 3.60    | 0.11    | 0.08 | 2.81      | 11.38 | 1.9696 |
| C328    | 62.833   | 0.653                  | 0.26 | 3.77    | 0.12    | 0.09 | 2.47      | 8.96  | 1.6526 |
| C347    | 69.768   | 0.566                  | 0.11 | 3.41    | 0.05    | 0.02 | 2.87      | 13.47 | 3.0127 |
| C353    | 66.358   | 0.468                  | 0.09 | 3.01    | 0.05    | 0.01 | 2.70      | 12.31 | 3.2083 |
| C354    | 73.494   | 0.636                  | 0.13 | 3.69    | 0.06    | 0.02 | 1.29      | 3.12  | 1.2480 |
| C355    | 31.300   | 0.692                  | 0.26 | 3.93    | 0.11    | 0.08 | 2.12      | 6.78  | 1.3846 |
| C359    | 43.106   | 0.342                  | 0.07 | 2.50    | 0.04    | 0.01 | 3.67      | 22.42 | 5.2311 |
| C832    | 331.502  | 0.686                  | 0.34 | 3.90    | 0.15    | 0.14 | 2.91      | 11.58 | 1.6706 |
| C949    | 217.819  | 0.686                  | 0.36 | 3.90    | 0.16    | 0.16 | 3.24      | 14.00 | 1.8084 |
| C959    | 92.025   | 0.458                  | 0.24 | 2.97    | 0.13    | 0.10 | 5.59      | 39.67 | 4.1313 |
| C1055   | 352.532  | 0.661                  | 0.20 | 3.80    | 0.09    | 0.05 | 2.50      | 9.62  | 1.9127 |
| C1056   | 180.154  | 0.691                  | 0.35 | 3.92    | 0.15    | 0.14 | 1.71      | 4.38  | 0.9781 |





| C1067 | 78.647  | 0.664 | 0.17 | 3.81 | 0.07 | 0.03 | 1.31 | 3.04  | 1.0895 |
|-------|---------|-------|------|------|------|------|------|-------|--------|
| C1069 | 108.284 | 0.664 | 0.30 | 3.81 | 0.13 | 0.11 | 2.21 | 7.11  | 1.3718 |
| C1070 | 106.072 | 0.652 | 0.33 | 3.76 | 0.14 | 0.14 | 2.17 | 6.78  | 1.2978 |
| C1071 | 104.516 | 0.581 | 0.17 | 3.47 | 0.08 | 0.04 | 1.47 | 3.70  | 1.2405 |
| C1072 | 110.015 | 0.669 | 0.23 | 3.83 | 0.10 | 0.07 | 1.65 | 4.38  | 1.1576 |
| C1076 | 89.973  | 0.422 | 0.08 | 2.83 | 0.04 | 0.01 | 1.23 | 3.00  | 1.5592 |
| C1077 | 56.297  | 0.341 | 0.07 | 2.49 | 0.04 | 0.01 | 1.87 | 6.58  | 2.6725 |
| C1084 | 131.686 | 0.784 | 0.63 | 4.35 | 0.24 | 0.42 | 1.79 | 4.38  | 0.7152 |
| C1085 | 122.039 | 0.608 | 0.12 | 3.58 | 0.06 | 0.02 | 1.99 | 6.85  | 1.9838 |
| C1087 | 76.314  | 0.699 | 0.21 | 3.96 | 0.09 | 0.05 | 2.05 | 6.63  | 1.4926 |
| C1098 | 51.360  | 0.777 | 0.62 | 4.32 | 0.24 | 0.42 | 4.18 | 20.87 | 1.6823 |
| C1142 | 70.333  | 0.772 | 0.69 | 4.29 | 0.27 | 0.53 | 3.43 | 14.19 | 1.3115 |
| C63   | 43.891  | 0.672 | 0.13 | 3.85 | 0.06 | 0.02 | 1.74 | 5.30  | 1.6016 |
| C68   | 95.215  | 0.640 | 0.22 | 3.71 | 0.10 | 0.06 | 1.56 | 3.97  | 1.1357 |
| C69   | 90.591  | 0.539 | 0.19 | 3.30 | 0.09 | 0.05 | 3.35 | 16.28 | 2.7494 |
| C149  | 111.411 | 0.585 | 0.12 | 3.48 | 0.05 | 0.02 | 1.74 | 5.41  | 1.7889 |
| C153  | 103.386 | 0.620 | 0.19 | 3.62 | 0.08 | 0.05 | 2.78 | 11.70 | 2.2317 |
| C154  | 151.246 | 0.383 | 0.08 | 2.67 | 0.04 | 0.01 | 2.34 | 9.75  | 3.1327 |
| C155  | 182.360 | 0.440 | 0.09 | 2.90 | 0.05 | 0.01 | 1.35 | 3.50  | 1.6599 |
| C158  | 95.534  | 0.688 | 0.28 | 3.91 | 0.12 | 0.09 | 2.09 | 6.57  | 1.3389 |
| C159  | 123.121 | 0.781 | 0.70 | 4.34 | 0.27 | 0.53 | 3.91 | 18.12 | 1.4764 |
| C160  | 106.448 | 0.774 | 0.70 | 4.30 | 0.27 | 0.53 | 3.98 | 18.69 | 1.5163 |
| C161  | 74.888  | 0.714 | 0.64 | 4.03 | 0.27 | 0.49 | 3.70 | 16.37 | 1.5283 |
| C162  | 77.886  | 0.830 | 0.66 | 4.58 | 0.24 | 0.45 | 4.75 | 26.45 | 1.7619 |
| C167  | 94.209  | 0.359 | 0.07 | 2.57 | 0.04 | 0.01 | 2.22 | 8.92  | 3.0810 |
| C168  | 78.631  | 0.581 | 0.23 | 3.47 | 0.11 | 0.08 | 3.59 | 17.89 | 2.6147 |
| C169  | 214.529 | 0.520 | 0.26 | 3.22 | 0.13 | 0.10 | 4.48 | 26.27 | 3.1479 |
| C2    | 161.800 | 0.606 | 0.12 | 3.57 | 0.06 | 0.02 | 1.67 | 5.00  | 1.6732 |
| C3    | 159.021 | 0.464 | 0.09 | 3.00 | 0.05 | 0.01 | 1.32 | 3.37  | 1.5796 |
| C4    | 176.056 | 0.693 | 0.14 | 3.94 | 0.06 | 0.02 | 1.05 | 2.12  | 0.9423 |
| C5    | 160.223 | 0.664 | 0.13 | 3.81 | 0.06 | 0.02 | 1.02 | 2.02  | 0.9497 |
| C6    | 91.419  | 0.608 | 0.18 | 3.58 | 0.08 | 0.04 | 0.91 | 1.55  | 0.7449 |
| C7    | 313.211 | 0.690 | 0.41 | 3.92 | 0.18 | 0.21 | 2.29 | 7.25  | 1.1955 |
| C9    | 148.848 | 0.612 | 0.12 | 3.59 | 0.06 | 0.02 | 1.80 | 5.70  | 1.7862 |
| C10   | 168.838 | 0.652 | 0.25 | 3.76 | 0.11 | 0.08 | 1.87 | 5.40  | 1.2807 |
| C11   | 141.011 | 0.784 | 0.63 | 4.35 | 0.24 | 0.42 | 1.99 | 5.31  | 0.7933 |
| C1    | 180.040 | 0.512 | 0.10 | 3.19 | 0.05 | 0.02 | 1.49 | 4.14  | 1.6748 |
| C8    | 260.058 | 0.565 | 0.17 | 3.40 | 0.08 | 0.04 | 2.60 | 10.44 | 2.2290 |





| C12 | 110.144 | 0.775 | 0.70 | 4.31 | 0.27 | 0.53 | 4.07 | 19.45 | 1.5470 |
|-----|---------|-------|------|------|------|------|------|-------|--------|
| C13 | 131.801 | 0.681 | 0.24 | 3.88 | 0.10 | 0.07 | 1.85 | 5.37  | 1.2765 |
| C14 | 153.294 | 0.640 | 0.16 | 3.71 | 0.07 | 0.03 | 1.00 | 1.89  | 0.8615 |
| C15 | 45.567  | 0.535 | 0.19 | 3.28 | 0.09 | 0.05 | 3.64 | 19.00 | 3.0028 |
| C16 | 50.804  | 0.785 | 0.71 | 4.35 | 0.27 | 0.54 | 4.25 | 21.12 | 1.5948 |

# 9.5 Cuenca Sur 1

Tabla 16 Diseños de la cuenca Sur1

| Tubería | In    | Out   | d    | Batea<br>inicial | Batea final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|-------|-------|------|------------------|-------------|-----------------------|---------------------|------------------------|-----------|
| -       | -     | -     | m    | m                | m           | m                     | m                   | m³/s                   | -         |
| C489    | n1534 | n1535 | 0.30 | 2580.68          | 2579.95     | 2.80                  | 1.60                | 0.10                   | 0.0073    |
| C490    | n1535 | n1536 | 0.40 | 2579.95          | 2579.61     | 1.60                  | 1.60                | 0.13                   | 0.0034    |
| C508    | n1558 | n1557 | 0.38 | 2579.27          | 2579.00     | 1.70                  | 1.80                | 0.10                   | 0.0019    |
| C524    | n1537 | n1536 | 0.90 | 2576.49          | 2576.41     | 4.70                  | 4.80                | 0.81                   | 0.0019    |
| C530    | n1543 | n1542 | 0.80 | 2577.08          | 2576.92     | 3.20                  | 3.50                | 0.69                   | 0.0016    |
| C545    | n1687 | n1686 | 0.30 | 2580.68          | 2580.57     | 1.60                  | 1.60                | 0.06                   | 0.0040    |
| C548    | n1684 | n1683 | 0.40 | 2580.41          | 2580.20     | 1.60                  | 1.80                | 0.10                   | 0.0019    |
| C1100   | n1545 | n1543 | 0.80 | 2577.28          | 2577.08     | 3.40                  | 3.20                | 0.52                   | 0.0011    |
| C6      | n1531 | n1534 | 0.30 | 2581.11          | 2580.68     | 1.50                  | 2.80                | 0.05                   | 0.0019    |
| C9      | N38   | n1687 | 0.30 | 2580.90          | 2580.68     | 1.50                  | 1.60                | 0.04                   | 0.0018    |
| C60     | n1536 | n1683 | 0.80 | 2576.41          | 2575.80     | 4.80                  | 6.20                | 0.96                   | 0.0030    |
| C61     | n1539 | n1537 | 0.90 | 2576.71          | 2576.49     | 4.10                  | 4.70                | 0.75                   | 0.0015    |
| C62     | n1542 | n1539 | 0.90 | 2576.92          | 2576.71     | 3.50                  | 4.10                | 0.72                   | 0.0014    |
| C111    | n1686 | n1684 | 0.35 | 2580.57          | 2580.41     | 1.60                  | 1.60                | 0.07                   | 0.0025    |
| C166    | n1605 | n1608 | 0.30 | 2577.92          | 2577.72     | 1.50                  | 2.10                | 0.04                   | 0.0021    |
| C167    | n1612 | n1608 | 0.20 | 2579.40          | 2578.42     | 1.40                  | 1.40                | 0.03                   | 0.0051    |
| C179    | n1567 | n1554 | 0.50 | 2577.71          | 2577.53     | 2.20                  | 2.60                | 0.18                   | 0.0018    |
| C184    | n1551 | n1545 | 0.30 | 2579.80          | 2578.98     | 1.50                  | 1.70                | 0.07                   | 0.0040    |
| C190    | n1585 | n1537 | 0.25 | 2579.71          | 2579.49     | 1.50                  | 1.70                | 0.03                   | 0.0016    |
| C492    | n1557 | n1554 | 0.40 | 2579.00          | 2578.53     | 1.80                  | 1.60                | 0.13                   | 0.0034    |
| C1      | n1573 | n1569 | 0.40 | 2578.05          | 2577.91     | 1.60                  | 2.00                | 0.08                   | 0.0010    |
| C2      | n1571 | n1569 | 0.20 | 2579.77          | 2578.51     | 1.40                  | 1.40                | 0.04                   | 0.0134    |
| C4      | n1608 | n1543 | 0.45 | 2577.72          | 2577.38     | 2.10                  | 2.90                | 0.13                   | 0.0019    |





| C11     | n1569    | n1567                  | 0.45 | 2577.91 | 2577.71 | 2.00 | 2.20      | 0.13 | 0.0017 |
|---------|----------|------------------------|------|---------|---------|------|-----------|------|--------|
| C12     | n1683    | N1                     | 0.80 | 2575.80 | 2575.12 | 6.20 | 7.20      | 1.09 | 0.0037 |
| C17     | n1554    | n1545                  | 0.70 | 2577.53 | 2577.28 | 2.60 | 3.40      | 0.36 | 0.0016 |
| C66     | N7       | n1558                  | 0.25 | 2579.52 | 2579.27 | 1.50 | 1.70      | 0.03 | 0.0019 |
| C3      | N1       | N2                     | 0.80 | 2575.12 | 2574.42 | 7.20 | 7.50      | 1.12 | 0.0040 |
| C5      | N2       | S5                     | 0.80 | 2574.42 | 2573.98 | 7.50 | 7.90      | 1.15 | 0.0042 |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta   | Radio   | Área | Velocidad | tao  | Froude |
| -       | m        | -                      | m    | rad     | m       | m2   | m/s       | Кра  | -      |
| C489    | 100.037  | 0.681                  | 0.20 | 3.88    | 0.09    | 0.05 | 1.99      | 6.29 | 1.4814 |
| C490    | 99.409   | 0.640                  | 0.26 | 3.71    | 0.11    | 0.08 | 1.56      | 3.86 | 1.0595 |
| C508    | 89.658   | 0.621                  | 0.24 | 3.63    | 0.11    | 0.07 | 1.39      | 3.16 | 0.9897 |
| C524    | 40.110   | 0.631                  | 0.57 | 3.67    | 0.26    | 0.42 | 1.91      | 4.89 | 0.8747 |
| C530    | 101.464  | 0.767                  | 0.61 | 4.27    | 0.24    | 0.41 | 1.67      | 3.84 | 0.6821 |
| C545    | 25.695   | 0.572                  | 0.17 | 3.43    | 0.08    | 0.04 | 1.35      | 3.16 | 1.1499 |
| C548    | 108.809  | 0.640                  | 0.26 | 3.71    | 0.11    | 0.08 | 1.14      | 2.17 | 0.7718 |
| C1100   | 189.219  | 0.729                  | 0.58 | 4.09    | 0.24    | 0.39 | 1.33      | 2.52 | 0.5700 |
| C6      | 228.535  | 0.647                  | 0.19 | 3.74    | 0.09    | 0.05 | 0.93      | 1.59 | 0.7242 |
| C9      | 130.232  | 0.622                  | 0.19 | 3.63    | 0.08    | 0.05 | 0.89      | 1.46 | 0.7105 |
| C60     | 204.955  | 0.767                  | 0.61 | 4.27    | 0.24    | 0.41 | 2.32      | 7.05 | 0.9491 |
| C61     | 145.249  | 0.653                  | 0.59 | 3.76    | 0.26    | 0.44 | 1.70      | 3.91 | 0.7561 |
| C62     | 145.186  | 0.662                  | 0.60 | 3.80    | 0.26    | 0.45 | 1.62      | 3.58 | 0.7136 |
| C111    | 64.087   | 0.624                  | 0.22 | 3.64    | 0.10    | 0.06 | 1.19      | 2.41 | 0.8787 |
| C166    | 95.827   | 0.541                  | 0.16 | 3.31    | 0.08    | 0.04 | 0.94      | 1.64 | 0.8272 |
| C167    | 193.592  | 0.636                  | 0.13 | 3.69    | 0.06    | 0.02 | 1.23      | 2.84 | 1.1849 |
| C179    | 99.997   | 0.677                  | 0.34 | 3.87    | 0.15    | 0.14 | 1.29      | 2.63 | 0.7511 |
| C184    | 205.503  | 0.688                  | 0.21 | 3.91    | 0.09    | 0.05 | 1.43      | 3.44 | 1.0546 |
| C190    | 133.749  | 0.698                  | 0.17 | 3.96    | 0.07    | 0.04 | 0.78      | 1.19 | 0.6250 |
| C492    | 136.640  | 0.639                  | 0.26 | 3.70    | 0.11    | 0.08 | 1.56      | 3.85 | 1.0591 |
| C1      | 141.865  | 0.695                  | 0.28 | 3.94    | 0.12    | 0.09 | 0.81      | 1.17 | 0.5153 |
| C2      | 94.897   | 0.618                  | 0.12 | 3.62    | 0.06    | 0.02 | 2.07      | 7.38 | 2.0451 |
| C4      | 178.720  | 0.643                  | 0.29 | 3.72    | 0.13    | 0.11 | 1.22      | 2.40 | 0.7745 |
| C11     | 111.506  | 0.667                  | 0.30 | 3.82    | 0.13    | 0.11 | 1.18      | 2.25 | 0.7282 |
| C12     | 186.668  | 0.776                  | 0.62 | 4.31    | 0.24    | 0.42 | 2.62      | 8.78 | 1.0553 |
| C17     | 158.387  | 0.616                  | 0.43 | 3.61    | 0.20    | 0.25 | 1.43      | 3.00 | 0.7561 |
| C66     | 138.327  | 0.700                  | 0.17 | 3.96    | 0.07    | 0.04 | 0.83      | 1.34 | 0.6663 |
| C3      | 174.999  | 0.763                  | 0.61 | 4.25    | 0.24    | 0.41 | 2.73      | 9.47 | 1.1202 |
| C5      | 104.109  | 0.759                  | 0.61 | 4.23    | 0.24    | 0.41 | 2.81      | 9.98 | 1.1576 |





# 9.6 Cuenca Sur 2

Tabla 17 Diseños de la cuenca sur 2

| Tubería | In    | Out   | d     | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|-------|-------|-------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -     | -     | m     | m                | m              | m                     | m                   | m³/s                   | -         |
| C554    | n1592 | n1591 | 0.200 | 2580.709         | 2579.751       | 1.400                 | 2.1                 | 0.0006                 | 0.02678   |
| C573    | n1598 | n1597 | 0.200 | 2578.938         | 2578.759       | 1.400                 | 1.4                 | 0.0112                 | 0.00526   |
| C578    | n1777 | n1776 | 0.200 | 2578.800         | 2578.431       | 1.400                 | 1.5                 | 0.0046                 | 0.00632   |
| C579    | n1776 | n1616 | 0.200 | 2578.431         | 2578.030       | 1.500                 | 1.7                 | 0.0078                 | 0.00351   |
| C582    | n1582 | n1580 | 0.200 | 2578.803         | 2578.275       | 1.400                 | 1.7                 | 0.0020                 | 0.01006   |
| C585    | n1578 | n1487 | 0.200 | 2578.005         | 2577.533       | 1.500                 | 1.4                 | 0.0117                 | 0.00784   |
| C617    | n1510 | n1472 | 0.250 | 2576.607         | 2576.033       | 1.500                 | 1.5                 | 0.0395                 | 0.00504   |
| C620    | n1624 | n1625 | 0.500 | 2573.001         | 2572.648       | 6.900                 | 7.8                 | 0.1928                 | 0.00236   |
| C1022   | n1516 | n1517 | 0.200 | 2577.461         | 2577.119       | 1.500                 | 2.6                 | 0.0105                 | 0.00369   |
| C1107   | n1487 | n1619 | 0.400 | 2573.833         | 2573.658       | 5.100                 | 5.5                 | 0.0930                 | 0.00162   |
| C70     | n1591 | n1589 | 0.200 | 2579.751         | 2579.312       | 2.100                 | 1.4                 | 0.0180                 | 0.00408   |
| C137    | n1589 | n1595 | 0.250 | 2579.312         | 2578.955       | 1.400                 | 1.5                 | 0.0273                 | 0.00310   |
| C146    | n1595 | n1597 | 0.250 | 2578.955         | 2578.659       | 1.500                 | 1.5                 | 0.0317                 | 0.00266   |
| C154    | n1616 | n1619 | 0.350 | 2578.030         | 2577.558       | 1.700                 | 1.6                 | 0.0588                 | 0.00246   |
| C176    | n1580 | n1578 | 0.200 | 2578.275         | 2578.005       | 1.700                 | 1.5                 | 0.0095                 | 0.00323   |
| C192    | n1622 | n1624 | 0.500 | 2573.209         | 2573.001       | 6.600                 | 6.9                 | 0.1660                 | 0.00146   |
| C197    | n1484 | n1487 | 0.400 | 2574.116         | 2573.833       | 4.600                 | 5.1                 | 0.0759                 | 0.00150   |
| C198    | n1477 | n1484 | 0.400 | 2574.403         | 2574.116       | 3.800                 | 4.6                 | 0.0716                 | 0.00109   |
| C202    | n1472 | n1477 | 0.380 | 2574.633         | 2574.403       | 2.900                 | 3.8                 | 0.0623                 | 0.00121   |
| C249    | n1514 | n1516 | 0.200 | 2577.789         | 2577.461       | 1.400                 | 1.5                 | 0.0060                 | 0.00398   |
| C7      | n1470 | n1472 | 0.200 | 2575.184         | 2574.633       | 1.400                 | 2.9                 | 0.0106                 | 0.00286   |
| C8      | n1619 | n1622 | 0.500 | 2573.658         | 2573.209       | 5.500                 | 6.6                 | 0.1554                 | 0.00150   |
| C10     | n1597 | n1616 | 0.300 | 2578.659         | 2578.230       | 1.500                 | 1.5                 | 0.0475                 | 0.00212   |
| C15     | n1692 | N3    | 0.200 | 2579.233         | 2578.610       | 1.400                 | 1.4                 | 0.0091                 | 0.00351   |
| C16     | N3    | n1624 | 0.250 | 2578.610         | 2578.301       | 1.400                 | 1.6                 | 0.0198                 | 0.00224   |
| C22     | n1517 | n1510 | 0.250 | 2577.119         | 2576.607       | 2.600                 | 1.5                 | 0.0311                 | 0.00287   |
| C41     | N5    | n1591 | 0.200 | 2580.250         | 2580.151       | 1.400                 | 1.7                 | 0.0113                 | 0.00283   |
| C45     | n1499 | n1517 | 0.200 | 2579.367         | 2578.319       | 1.400                 | 1.4                 | 0.0075                 | 0.00347   |





| C1      | n1625    | N1                     | 0.500 | 2572.648 | 2572.477 | 7.800 | 7.4       | 0.1963 | 0.00330 |
|---------|----------|------------------------|-------|----------|----------|-------|-----------|--------|---------|
| C2      | N1       | S6                     | 0.500 | 2572.477 | 2572.347 | 7.400 | 7.5       | 0.2045 | 0.00247 |
| Tubería | Longitud | Relación de<br>llenado | yn    | Theta    | Radio    | Área  | Velocidad | tao    | Froude  |
| -       | m        | -                      | m     | rad      | m        | m2    | m/s       | Кра    | -       |
| C554    | 35.783   | 0.057                  | 0.011 | 0.968    | 0.007    | 7.204 | 0.777     | 1.956  | 2.820   |
| C573    | 33.994   | 0.383                  | 0.077 | 2.668    | 0.041    | 0.011 | 1.014     | 2.141  | 1.357   |
| C578    | 58.349   | 0.229                  | 0.046 | 1.995    | 0.027    | 0.005 | 0.845     | 1.686  | 1.502   |
| C579    | 113.989  | 0.355                  | 0.071 | 2.552    | 0.039    | 0.010 | 0.779     | 1.349  | 1.089   |
| C582    | 52.443   | 0.133                  | 0.027 | 1.494    | 0.017    | 0.002 | 0.784     | 1.644  | 1.851   |
| C585    | 60.158   | 0.347                  | 0.069 | 2.520    | 0.038    | 0.010 | 1.203     | 2.959  | 1.702   |
| C617    | 113.796  | 0.570                  | 0.142 | 3.421    | 0.068    | 0.029 | 1.366     | 3.342  | 1.277   |
| C620    | 149.316  | 0.636                  | 0.318 | 3.691    | 0.143    | 0.132 | 1.465     | 3.309  | 0.894   |
| C1022   | 92.532   | 0.410                  | 0.082 | 2.781    | 0.044    | 0.012 | 0.862     | 1.583  | 1.108   |
| C1107   | 107.978  | 0.667                  | 0.267 | 3.823    | 0.116    | 0.089 | 1.044     | 1.852  | 0.686   |
| C70     | 107.592  | 0.543                  | 0.109 | 3.314    | 0.053    | 0.017 | 1.031     | 2.105  | 1.113   |
| C137    | 114.899  | 0.535                  | 0.134 | 3.281    | 0.065    | 0.027 | 1.021     | 1.986  | 0.996   |
| C146    | 111.229  | 0.621                  | 0.155 | 3.631    | 0.071    | 0.032 | 0.989     | 1.843  | 0.868   |
| C154    | 191.703  | 0.535                  | 0.187 | 3.283    | 0.091    | 0.052 | 1.121     | 2.204  | 0.924   |
| C176    | 83.536   | 0.406                  | 0.081 | 2.762    | 0.043    | 0.012 | 0.795     | 1.372  | 1.029   |
| C192    | 141.731  | 0.688                  | 0.344 | 3.915    | 0.147    | 0.144 | 1.152     | 2.121  | 0.659   |
| C197    | 188.705  | 0.597                  | 0.239 | 3.534    | 0.111    | 0.078 | 0.969     | 1.631  | 0.692   |
| C198    | 261.482  | 0.645                  | 0.258 | 3.731    | 0.115    | 0.086 | 0.835     | 1.238  | 0.563   |
| C202    | 188.744  | 0.619                  | 0.235 | 3.622    | 0.107    | 0.074 | 0.845     | 1.281  | 0.604   |
| C249    | 82.283   | 0.298                  | 0.060 | 2.311    | 0.034    | 0.008 | 0.760     | 1.331  | 1.171   |
| C7      | 192.511  | 0.448                  | 0.090 | 2.934    | 0.046    | 0.014 | 0.780     | 1.305  | 0.951   |
| C8      | 297.546  | 0.649                  | 0.325 | 3.747    | 0.144    | 0.135 | 1.152     | 2.131  | 0.692   |
| C10     | 201.626  | 0.640                  | 0.192 | 3.710    | 0.086    | 0.048 | 0.994     | 1.793  | 0.779   |
| C15     | 177.048  | 0.387                  | 0.077 | 2.685    | 0.042    | 0.011 | 0.815     | 1.443  | 1.084   |
| C16     | 137.787  | 0.492                  | 0.123 | 3.109    | 0.062    | 0.024 | 0.824     | 1.361  | 0.848   |
| C22     | 177.997  | 0.596                  | 0.149 | 3.530    | 0.069    | 0.031 | 1.019     | 1.952  | 0.922   |
| C41     | 34.922   | 0.465                  | 0.093 | 3.002    | 0.048    | 0.014 | 0.789     | 1.326  | 0.940   |
| C45     | 301.934  | 0.349                  | 0.070 | 2.529    | 0.039    | 0.010 | 0.767     | 1.315  | 1.082   |
| C1      | 51.781   | 0.570                  | 0.285 | 3.423    | 0.135    | 0.116 | 1.698     | 4.377  | 1.122   |
| C2      | 52.602   | 0.651                  | 0.326 | 3.755    | 0.144    | 0.135 | 1.511     | 3.495  | 0.905   |





## 9.7 Cuenca Sur 3

### Tabla 18 Diseños de la cuenca sur 3

| Tubería | In       | Out                    | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|----------|------------------------|------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -        | -                      | m    | m                | m              | m                     | m                   | m³/s                   | -         |
| C649    | n1640    | n1639                  | 0.25 | 2578.08          | 2577.81        | 1.50                  | 1.50                | 0.03                   | 0.0031    |
| C660    | n1639    | n1641                  | 0.60 | 2577.41          | 2577.15        | 1.90                  | 2.50                | 0.27                   | 0.0019    |
| C672    | n1654    | n1525                  | 0.38 | 2578.34          | 2578.16        | 1.70                  | 2.00                | 0.09                   | 0.0017    |
| C1108   | n1672    | n1674                  | 0.80 | 2576.97          | 2576.85        | 2.90                  | 3.10                | 0.45                   | 0.0009    |
| C1127   | n1643    | n1639                  | 0.45 | 2577.54          | 2577.41        | 1.50                  | 1.90                | 0.12                   | 0.0019    |
| C233    | n1525    | n1656                  | 0.50 | 2578.16          | 2577.81        | 2.00                  | 1.90                | 0.23                   | 0.0026    |
| C264    | n1656    | n1670                  | 0.50 | 2577.81          | 2577.14        | 1.90                  | 1.70                | 0.35                   | 0.0061    |
| C266    | n1708    | n1706                  | 0.20 | 2577.86          | 2577.60        | 1.40                  | 1.60                | 0.02                   | 0.0035    |
| C277    | n1652    | n1654                  | 0.30 | 2578.67          | 2578.34        | 1.50                  | 1.70                | 0.05                   | 0.0021    |
| C278    | n1637    | n1639                  | 0.35 | 2578.23          | 2577.71        | 1.60                  | 1.60                | 0.07                   | 0.0025    |
| C21     | n1520    | n1525                  | 0.38 | 2578.56          | 2578.16        | 1.60                  | 2.00                | 0.09                   | 0.0021    |
| C24     | n1641    | n1696                  | 0.70 | 2577.15          | 2576.91        | 2.50                  | 3.60                | 0.32                   | 0.0012    |
| C37     | n1670    | n1672                  | 0.70 | 2577.14          | 2576.97        | 1.70                  | 2.90                | 0.39                   | 0.0012    |
| C38     | n1679    | n1696                  | 0.90 | 2576.65          | 2576.51        | 3.70                  | 4.00                | 0.50                   | 0.0011    |
| C39     | n1696    | n1700                  | 0.90 | 2576.51          | 2576.28        | 4.00                  | 4.00                | 0.84                   | 0.0016    |
| C40     | n1674    | n1679                  | 0.80 | 2576.85          | 2576.65        | 3.10                  | 3.70                | 0.46                   | 0.0009    |
| C43     | n1647    | n1643                  | 0.30 | 2578.53          | 2577.54        | 1.50                  | 1.50                | 0.08                   | 0.0055    |
| C1      | n1700    | N1                     | 0.90 | 2576.28          | 2575.85        | 4.00                  | 3.20                | 0.91                   | 0.0016    |
| C2      | n1706    | N1                     | 0.30 | 2577.60          | 2577.05        | 1.60                  | 2.00                | 0.06                   | 0.0027    |
| С3      | N1       | S7                     | 0.90 | 2575.85          | 2575.59        | 3.20                  | 3.20                | 1.01                   | 0.0017    |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta            | Radio          | Área                  | Velocidad           | tao                    | Froude    |
| -       | m        | -                      | m    | rad              | m              | m²                    | m/s                 | Кра                    | -         |
| C649    | 90.418   | 0.611                  | 0.15 | 3.59             | 0.07           | 0.03                  | 1.06                | 2.10                   | 0.9435    |
| C660    | 139.051  | 0.634                  | 0.38 | 3.68             | 0.17           | 0.19                  | 1.44                | 3.11                   | 0.8048    |
| C672    | 106.569  | 0.690                  | 0.26 | 3.92             | 0.11           | 0.08                  | 1.05                | 1.90                   | 0.6909    |
| C1108   | 128.397  | 0.708                  | 0.57 | 4.00             | 0.24           | 0.38                  | 1.17                | 2.02                   | 0.5181    |
| C1127   | 69.344   | 0.610                  | 0.27 | 3.59             | 0.13           | 0.10                  | 1.22                | 2.41                   | 0.8064    |
| C233    | 131.666  | 0.693                  | 0.35 | 3.93             | 0.15           | 0.15                  | 1.58                | 3.79                   | 0.9016    |
| C264    | 110.064  | 0.672                  | 0.34 | 3.85             | 0.15           | 0.14                  | 2.50                | 8.75                   | 1.4568    |





| C266 | 75.619  | 0.619 | 0.12 | 3.62 | 0.06 | 0.02 | 0.99 | 1.92 | 0.9708 |
|------|---------|-------|------|------|------|------|------|------|--------|
| C277 | 161.429 | 0.669 | 0.20 | 3.83 | 0.09 | 0.05 | 0.99 | 1.78 | 0.7494 |
| C278 | 212.387 | 0.584 | 0.20 | 3.48 | 0.10 | 0.06 | 1.16 | 2.32 | 0.9005 |
| C21  | 190.507 | 0.650 | 0.25 | 3.75 | 0.11 | 0.08 | 1.16 | 2.28 | 0.8014 |
| C24  | 193.309 | 0.628 | 0.44 | 3.66 | 0.20 | 0.25 | 1.26 | 2.37 | 0.6556 |
| C37  | 149.628 | 0.742 | 0.52 | 4.15 | 0.21 | 0.31 | 1.27 | 2.39 | 0.5747 |
| C38  | 121.860 | 0.558 | 0.50 | 3.37 | 0.24 | 0.36 | 1.37 | 2.67 | 0.6840 |
| C39  | 144.727 | 0.700 | 0.63 | 3.96 | 0.27 | 0.48 | 1.77 | 4.21 | 0.7445 |
| C40  | 223.217 | 0.708 | 0.57 | 4.00 | 0.24 | 0.38 | 1.21 | 2.13 | 0.5338 |
| C43  | 180.584 | 0.622 | 0.19 | 3.63 | 0.08 | 0.05 | 1.66 | 4.57 | 1.3303 |
| C1   | 265.305 | 0.744 | 0.67 | 4.16 | 0.27 | 0.51 | 1.79 | 4.30 | 0.7126 |
| C2   | 199.872 | 0.687 | 0.21 | 3.91 | 0.09 | 0.05 | 1.17 | 2.38 | 0.8625 |
| C3   | 149.168 | 0.785 | 0.71 | 4.36 | 0.27 | 0.54 | 1.88 | 4.67 | 0.7044 |

# 9.8 Cuenca Sur 4

### Tabla 19 Diseños de la cuenca sur 4

| Tubería | In    | Out   | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|-------|-------|------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -     | •     | m    | m                | m              | m                     | m                   | m³/s                   |           |
| C719    | n1713 | n1714 | 0.20 | 2577.90          | 2577.55        | 1.60                  | 2.20                | 0.01                   | 0.0033    |
| C720    | n1793 | n1713 | 0.20 | 2578.54          | 2577.90        | 1.40                  | 1.60                | 0.01                   | 0.0038    |
| C722    | n1714 | n1715 | 0.20 | 2577.55          | 2575.88        | 2.20                  | 1.40                | 0.02                   | 0.0110    |
| C723    | n1717 | n1718 | 0.38 | 2575.70          | 2575.44        | 1.70                  | 2.90                | 0.06                   | 0.0011    |
| C724    | n1716 | n1717 | 0.30 | 2575.83          | 2575.70        | 1.50                  | 1.70                | 0.05                   | 0.0026    |
| C725    | n1715 | n1716 | 0.30 | 2575.88          | 2575.83        | 1.40                  | 1.50                | 0.04                   | 0.0022    |
| C728    | n1730 | n1731 | 0.20 | 2576.70          | 2576.49        | 1.80                  | 2.10                | 0.02                   | 0.0030    |
| C729    | n1729 | n1730 | 0.20 | 2577.01          | 2576.70        | 1.40                  | 1.80                | 0.01                   | 0.0046    |
| C734    | n1722 | n1715 | 0.20 | 2576.37          | 2575.88        | 1.50                  | 1.40                | 0.02                   | 0.0028    |
| C752    | n1718 | n1737 | 0.38 | 2575.44          | 2575.23        | 2.90                  | 4.20                | 0.11                   | 0.0027    |
| C772    | n1765 | n1754 | 0.20 | 2577.63          | 2577.20        | 1.40                  | 2.10                | 0.01                   | 0.0026    |
| C1112   | n1753 | N42   | 0.20 | 2577.64          | 2577.30        | 1.40                  | 1.80                | 0.01                   | 0.0031    |
| C286    | N42   | n1741 | 0.30 | 2577.30          | 2577.02        | 1.80                  | 2.20                | 0.03                   | 0.0016    |
| C293    | n1758 | n1756 | 0.20 | 2577.46          | 2576.81        | 1.40                  | 2.40                | 0.01                   | 0.0036    |
| C294    | n1756 | n1754 | 0.20 | 2576.81          | 2576.40        | 2.40                  | 2.90                | 0.01                   | 0.0023    |





| C28         n1727         n1716         0.20         2577.02         2575.93         1.40         1.40         0.01         0.0079           C29         n1737         n1754         0.40         2575.23         2574.90         4.20         4.40         0.11         0.0021           C30         n1736         n4         0.30         2576.20         2576.37         1.40         1.50         0.01         0.0035           C33         n1736         N4         0.30         2576.20         2575.94         2.20         2.50         0.03         0.0015           C34         N4         n1718         0.30         2575.994         2575.20         2.50         0.03         0.0015           C35         n1731         n1736         0.25         2576.49         2576.20         2.10         2.20         0.03         0.0022           C1         n1741         N1         0.45         2573.85         2575.35         5.30         0.18         0.031           C2         N1         S8         0.45         2573.85         2573.85         4.60         5.30         0.18         0.003           Tuberia         Longitud         Relación de llenado         y         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C28     | n1727    | n1716 | 0.20  | 2577.02 | 2575.93 | 1.40 | 1.40      | 0.01 | 0.0079 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-------|-------|---------|---------|------|-----------|------|--------|
| C30         n1754         n1741         0.45         2574.90         2574.62         4.40         4.60         0.14         0.0022           C31         n1724         n1722         0.20         2576.58         2576.37         1.40         1.50         0.01         0.0035           C33         n1736         N4         0.30         2576.20         2575.94         2.20         2.50         0.03         0.0015           C34         N4         n1718         0.30         2575.94         2575.54         2.50         2.80         0.04         0.0015           C35         n1731         n1736         0.25         2576.49         2576.20         2.10         2.20         0.03         0.0022           C1         n1741         N1         0.45         2574.62         2573.85         4.60         5.30         0.18         0.0031           C2         N1         S8         0.45         2573.85         2573.85         5.50         5.70         0.20         0.0034           Tubería         Longitud         Relación de llenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           C719         105.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          |       |       |         |         |      |           |      |        |
| C31         n1724         n1722         0.20         2576.58         2576.37         1.40         1.50         0.01         0.0035           C33         n1736         N4         0.30         2576.20         2575.94         2.20         2.50         0.03         0.0015           C34         N4         n1718         0.30         2575.94         2575.54         2.50         2.80         0.04         0.0015           C35         n1731         n1736         0.25         2576.49         2575.62         2.10         2.20         0.03         0.0022           C1         n1741         N1         0.45         2574.62         2573.85         4.60         5.30         0.18         0.0031           C2         N1         S8         0.45         2573.85         2573.35         5.30         5.70         0.20         0.0034           Tubería         Longitud         Relación de llenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           -         m         -         m         rad         m         m2         m/s         Kpa         -           C719         105.635         0.464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |       |       |         |         |      |           |      |        |
| C33         n1736         N4         0.30         2576.20         2575.94         2.20         2.50         0.03         0.0015           C34         N4         n1718         0.30         2575.94         2575.54         2.50         2.80         0.04         0.0015           C35         n1731         n1736         0.25         2576.49         2573.85         4.60         5.30         0.18         0.0031           C2         N1         S8         0.45         2573.85         2573.35         5.30         5.70         0.20         0.0034           Tubería         Longitud         Relación de Ilenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1        |       |       |         |         |      |           |      |        |
| C34         N4         n1718         0.30         2575.94         2575.54         2.50         2.80         0.04         0.0015           C35         n1731         n1736         0.25         2576.49         2576.20         2.10         2.20         0.03         0.0022           C1         n1741         N1         0.45         2574.62         2573.85         4.60         5.30         0.18         0.0031           Tubería         Longitud         Relación de llenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           -         m         -         m         rad         m         m         m         m         m         M         proud         m         proud         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m         m<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          | 1     |       |         |         |      |           |      |        |
| C35         n1731         n1736         0.25         2576.49         2576.20         2.10         2.20         0.03         0.0022           C1         n1741         N1         0.45         2574.62         2573.85         4.60         5.30         0.18         0.0031           C2         N1         S8         0.45         2573.85         2573.35         5.30         5.70         0.20         0.0034           Tubería         Longitud         Relación de llenado le llena |         |          |       |       |         |         |      |           |      |        |
| C1         n1741         N1         0.45         2574.62         2573.85         4.60         5.30         0.18         0.0031           C2         N1         S8         0.45         2573.85         2573.35         5.30         5.70         0.20         0.0034           Tubería         Longitud         Relación de llenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           -         m         -         m         rad         m         m2         m/s         Kpa         -           C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.558           C725         22.576         0.560         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |       |       |         |         |      |           |      |        |
| C2         N1         S8         0.45         2573.85         2573.35         5.30         5.70         0.20         0.0034           Tubería         Longitud         Relación de llenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           -         m         -         m         rad         m         m2         m/s         Kpa         -           C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |          |       |       |         |         |      |           |      |        |
| Tubería         Longitud         Relación de Ilenado         yn         Theta         Radio         Área         Velocidad         tao         Froude           -         m         -         m         rad         m         m2         m/s         Kpa         -           C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         68.188         0.309         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |          | 1     |       |         |         |      |           |      |        |
| Tuberia         Longitud         Ilenado         yn         Theta         Radio         Area         Velocidad         tao         Froude           C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C2      | N1       |       | 0.45  | 2573.85 | 2573.35 | 5.30 | 5.70      | 0.20 | 0.0034 |
| C719         105.635         0.464         0.093         3.00         0.05         0.01         0.86         1.54         1.0243           C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tubería | Longitud |       | yn    | Theta   | Radio   | Área | Velocidad | tao  | Froude |
| C720         169.164         0.322         0.064         2.41         0.04         0.01         0.78         1.36         1.1451           C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       | m        | -     | m     | rad     | m       | m2   | m/s       | Кра  | -      |
| C722         152.281         0.409         0.082         2.77         0.04         0.01         1.57         4.68         2.0245           C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C719    | 105.635  | 0.464 | 0.093 | 3.00    | 0.05    | 0.01 | 0.86      | 1.54 | 1.0243 |
| C723         233.412         0.657         0.250         3.78         0.11         0.08         0.82         1.20         0.5584           C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C720    | 169.164  | 0.322 | 0.064 | 2.41    | 0.04    | 0.01 | 0.78      | 1.36 | 1.1451 |
| C724         50.719         0.621         0.186         3.63         0.08         0.05         1.09         2.13         0.8757           C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C722    | 152.281  | 0.409 | 0.082 | 2.77    | 0.04    | 0.01 | 1.57      | 4.68 | 2.0245 |
| C725         22.576         0.560         0.168         3.38         0.08         0.04         0.97         1.74         0.8395           C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C723    | 233.412  | 0.657 | 0.250 | 3.78    | 0.11    | 0.08 | 0.82      | 1.20 | 0.5584 |
| C728         69.812         0.630         0.126         3.67         0.06         0.02         0.91         1.66         0.8859           C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C724    | 50.719   | 0.621 | 0.186 | 3.63    | 0.08    | 0.05 | 1.09      | 2.13 | 0.8757 |
| C729         68.188         0.309         0.062         2.36         0.04         0.01         0.84         1.58         1.2669           C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C725    | 22.576   | 0.560 | 0.168 | 3.38    | 0.08    | 0.04 | 0.97      | 1.74 | 0.8395 |
| C734         176.911         0.583         0.117         3.48         0.05         0.02         0.86         1.49         0.8799           C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C30         129.923         0.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C728    | 69.812   | 0.630 | 0.126 | 3.67    | 0.06    | 0.02 | 0.91      | 1.66 | 0.8859 |
| C752         75.440         0.671         0.255         3.84         0.11         0.08         1.33         2.91         0.8943           C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C729    | 68.188   | 0.309 | 0.062 | 2.36    | 0.04    | 0.01 | 0.84      | 1.58 | 1.2669 |
| C772         163.281         0.466         0.093         3.01         0.05         0.01         0.76         1.23         0.9025           C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C734    | 176.911  | 0.583 | 0.117 | 3.48    | 0.05    | 0.02 | 0.86      | 1.49 | 0.8799 |
| C1112         108.290         0.425         0.085         2.84         0.04         0.01         0.80         1.38         1.0080           C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C752    | 75.440   | 0.671 | 0.255 | 3.84    | 0.11    | 0.08 | 1.33      | 2.91 | 0.8943 |
| C286         182.540         0.518         0.155         3.21         0.08         0.04         0.78         1.17         0.7070           C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C772    | 163.281  | 0.466 | 0.093 | 3.01    | 0.05    | 0.01 | 0.76      | 1.23 | 0.9025 |
| C293         179.316         0.325         0.065         2.42         0.04         0.01         0.75         1.29         1.1064           C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C1112   | 108.290  | 0.425 | 0.085 | 2.84    | 0.04    | 0.01 | 0.80      | 1.38 | 1.0080 |
| C294         176.166         0.533         0.107         3.27         0.05         0.02         0.75         1.19         0.8204           C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C286    | 182.540  | 0.518 | 0.155 | 3.21    | 0.08    | 0.04 | 0.78      | 1.17 | 0.7070 |
| C28         139.234         0.235         0.047         2.02         0.03         0.01         0.97         2.14         1.6991           C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C293    | 179.316  | 0.325 | 0.065 | 2.42    | 0.04    | 0.01 | 0.75      | 1.29 | 1.1064 |
| C29         157.376         0.689         0.276         3.92         0.12         0.09         1.22         2.45         0.7801           C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C294    | 176.166  | 0.533 | 0.107 | 3.27    | 0.05    | 0.02 | 0.75      | 1.19 | 0.8204 |
| C30         129.923         0.640         0.288         3.71         0.13         0.11         1.32         2.77         0.8423           C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C28     | 139.234  | 0.235 | 0.047 | 2.02    | 0.03    | 0.01 | 0.97      | 2.14 | 1.6991 |
| C31         59.380         0.371         0.074         2.62         0.04         0.01         0.80         1.41         1.0897           C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C29     | 157.376  | 0.689 | 0.276 | 3.92    | 0.12    | 0.09 | 1.22      | 2.45 | 0.7801 |
| C33         180.274         0.562         0.168         3.39         0.08         0.04         0.77         1.15         0.6644           C34         271.559         0.613         0.184         3.60         0.08         0.05         0.80         1.22         0.6501           C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C30     | 129.923  | 0.640 | 0.288 | 3.71    | 0.13    | 0.11 | 1.32      | 2.77 | 0.8423 |
| C34     271.559     0.613     0.184     3.60     0.08     0.05     0.80     1.22     0.6501       C35     132.775     0.618     0.154     3.62     0.07     0.03     0.89     1.52     0.7834       C1     247.321     0.671     0.302     3.84     0.13     0.11     1.61     3.99     0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C31     | 59.380   | 0.371 | 0.074 | 2.62    | 0.04    | 0.01 | 0.80      | 1.41 | 1.0897 |
| C35         132.775         0.618         0.154         3.62         0.07         0.03         0.89         1.52         0.7834           C1         247.321         0.671         0.302         3.84         0.13         0.11         1.61         3.99         0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C33     | 180.274  | 0.562 | 0.168 | 3.39    | 0.08    | 0.04 | 0.77      | 1.15 | 0.6644 |
| C1 247.321 0.671 0.302 3.84 0.13 0.11 1.61 3.99 0.9914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C34     | 271.559  | 0.613 | 0.184 | 3.60    | 0.08    | 0.05 | 0.80      | 1.22 | 0.6501 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C35     | 132.775  | 0.618 | 0.154 | 3.62    | 0.07    | 0.03 | 0.89      | 1.52 | 0.7834 |
| C2 147.588 0.683 0.308 3.89 0.13 0.12 1.70 4.41 1.0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C1      | 247.321  | 0.671 | 0.302 | 3.84    | 0.13    | 0.11 | 1.61      | 3.99 | 0.9914 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C2      | 147.588  | 0.683 | 0.308 | 3.89    | 0.13    | 0.12 | 1.70      | 4.41 | 1.0330 |





## 9.9 Cuenca Sur 5

### Tabla 20 Diseños de la cuenca sur 5

| Tubería | In       | Out                    | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal<br>de<br>diseño | Pendiente |
|---------|----------|------------------------|------|------------------|----------------|-----------------------|---------------------|------------------------|-----------|
| -       | -        | -                      | m    | m                | m              | m                     | m                   | m³/s                   | ı         |
| C75     | n45      | n2097                  | 0.40 | 2576.20          | 2576.06        | 1.60                  | 1.90                | 0.09                   | 0.00      |
| C185    | n2097    | n2085                  | 0.45 | 2576.06          | 2575.88        | 1.90                  | 1.80                | 0.15                   | 0.00      |
| C195    | n2094    | n2096                  | 0.70 | 2574.97          | 2574.64        | 3.40                  | 3.70                | 0.62                   | 0.00      |
| C531    | n2087    | n2088                  | 0.60 | 2575.60          | 2575.37        | 2.20                  | 3.00                | 0.31                   | 0.00      |
| C642    | n2086    | n2087                  | 0.60 | 2575.72          | 2575.60        | 1.90                  | 2.20                | 0.23                   | 0.00      |
| C643    | n2085    | n2086                  | 0.53 | 2575.88          | 2575.72        | 1.80                  | 1.90                | 0.18                   | 0.00      |
| C644    | n2095    | n2094                  | 0.35 | 2577.19          | 2576.77        | 1.60                  | 1.60                | 0.09                   | 0.00      |
| C1057   | n2096    | n50                    | 0.80 | 2574.64          | 2574.42        | 3.70                  | 3.70                | 0.68                   | 0.00      |
| C427    | n2088    | n2090                  | 0.70 | 2575.37          | 2575.26        | 3.00                  | 3.20                | 0.34                   | 0.00      |
| C434    | n2090    | n2094                  | 0.70 | 2575.26          | 2574.97        | 3.20                  | 3.40                | 0.50                   | 0.00      |
| C435    | n2092    | n2090                  | 0.40 | 2576.98          | 2576.56        | 1.60                  | 1.90                | 0.12                   | 0.00      |
| C64     | n50      | S9                     | 0.80 | 2574.42          | 2574.30        | 3.70                  | 3.30                | 0.71                   | 0.00      |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta            | Radio          | Área                  | Velocidad           | tao                    | Froude    |
| -       | m        | -                      | m    | rad              | m              | m2                    | m/s                 | Кра                    | •         |
| C75     | 97.513   | 0.662                  | 0.26 | 3.80             | 0.12           | 0.09                  | 0.99                | 1.68                   | 0.65      |
| C185    | 86.322   | 0.681                  | 0.31 | 3.88             | 0.13           | 0.12                  | 1.30                | 2.70                   | 0.79      |
| C195    | 119.671  | 0.737                  | 0.52 | 4.13             | 0.21           | 0.30                  | 2.03                | 5.64                   | 0.92      |
| C531    | 100.191  | 0.640                  | 0.38 | 3.71             | 0.17           | 0.19                  | 1.61                | 3.82                   | 0.89      |
| C642    | 95.662   | 0.637                  | 0.38 | 3.69             | 0.17           | 0.19                  | 1.19                | 2.18                   | 0.66      |
| C643    | 109.154  | 0.673                  | 0.36 | 3.85             | 0.15           | 0.16                  | 1.16                | 2.14                   | 0.66      |
| C644    | 132.930  | 0.624                  | 0.22 | 3.64             | 0.10           | 0.06                  | 1.36                | 3.09                   | 1.01      |
| C1057   | 129.056  | 0.738                  | 0.59 | 4.13             | 0.24           | 0.40                  | 1.71                | 4.02                   | 0.73      |
| C427    | 103.481  | 0.692                  | 0.48 | 3.93             | 0.21           | 0.28                  | 1.20                | 2.15                   | 0.58      |
| C434    | 153.590  | 0.720                  | 0.50 | 4.05             | 0.21           | 0.30                  | 1.67                | 3.95                   | 0.78      |
| C435    | 150.815  | 0.650                  | 0.26 | 3.75             | 0.12           | 0.09                  | 1.38                | 3.09                   | 0.93      |
| C64     | 65.746   | 0.738                  | 0.59 | 4.13             | 0.24           | 0.40                  | 1.78                | 4.31                   | 0.75      |





## 9.10 Cuenca Sur PTAR

Tabla 21 Diseños de la cuenca sur PTAR

| Tubería | In    | Out   | d    | Batea<br>inicial | Batea<br>final | Excavación<br>inicial | Excavación<br>final | Caudal de diseño | Pendiente |
|---------|-------|-------|------|------------------|----------------|-----------------------|---------------------|------------------|-----------|
| -       | -     | -     | m    | m                | m              | m                     | m                   | m³/s             | -         |
| C861    | n2067 | n2066 | 0.30 | 2573.55          | 2573.16        | 1.50                  | 1.60                | 0.08             | 0.01      |
| C862    | n2066 | n2065 | 0.35 | 2573.16          | 2572.87        | 1.60                  | 1.60                | 0.15             | 0.01      |
| C863    | n2065 | n2064 | 0.80 | 2572.47          | 2572.37        | 2.00                  | 2.00                | 0.51             | 0.00      |
| C864    | n2064 | n2063 | 0.80 | 2572.37          | 2572.10        | 2.00                  | 2.20                | 0.58             | 0.00      |
| C865    | n2063 | n2062 | 0.80 | 2572.10          | 2571.83        | 2.20                  | 2.10                | 0.62             | 0.00      |
| C872    | n2072 | n2071 | 0.50 | 2572.51          | 2572.11        | 1.90                  | 1.90                | 0.14             | 0.00      |
| C873    | n2071 | n2070 | 0.60 | 2572.11          | 2571.80        | 1.90                  | 1.90                | 0.22             | 0.00      |
| C881    | n2055 | n2053 | 1.00 | 2571.54          | 2571.16        | 2.10                  | 2.30                | 1.52             | 0.00      |
| C882    | n2070 | n2055 | 0.60 | 2571.80          | 2571.64        | 1.90                  | 2.00                | 0.26             | 0.00      |
| C883    | n2053 | n2052 | 1.00 | 2571.16          | 2570.64        | 2.30                  | 2.50                | 1.55             | 0.00      |
| C899    | n1810 | n1809 | 0.30 | 2574.15          | 2573.46        | 1.50                  | 1.60                | 0.09             | 0.01      |
| C906    | N393  | N394  | 0.30 | 2576.27          | 2575.96        | 1.50                  | 2.10                | 0.05             | 0.00      |
| C910    | n1803 | n1802 | 0.53 | 2575.74          | 2575.54        | 3.50                  | 3.50                | 0.19             | 0.00      |
| C923    | n1895 | n1896 | 0.70 | 2573.83          | 2573.40        | 3.80                  | 1.90                | 0.84             | 0.01      |
| C939    | n1963 | n1957 | 1.20 | 2569.61          | 2569.48        | 3.20                  | 4.00                | 1.78             | 0.00      |
| C940    | n1896 | n1959 | 0.70 | 2573.40          | 2572.57        | 1.90                  | 1.90                | 0.93             | 0.01      |
| C943    | n1957 | n1956 | 1.20 | 2569.48          | 2569.08        | 4.00                  | 3.40                | 2.84             | 0.00      |
| C944    | n1956 | n1955 | 1.20 | 2569.08          | 2568.54        | 3.40                  | 3.70                | 2.88             | 0.00      |
| C975    | n1863 | n1854 | 0.53 | 2574.07          | 2573.56        | 1.70                  | 1.80                | 0.32             | 0.00      |
| C651    | n1780 | n1779 | 0.25 | 2575.85          | 2575.52        | 1.50                  | 2.60                | 0.02             | 0.00      |
| C1118   | n1782 | n1785 | 0.30 | 2577.39          | 2577.14        | 1.50                  | 1.80                | 0.06             | 0.00      |
| C1120   | N394  | n1803 | 0.45 | 2575.96          | 2575.74        | 2.10                  | 3.50                | 0.10             | 0.00      |
| C1138   | n1391 | n1156 | 0.60 | 2571.35          | 2570.33        | 2.70                  | 3.50                | 0.54             | 0.01      |
| C208    | n1854 | n1857 | 0.60 | 2573.56          | 2573.16        | 1.80                  | 1.80                | 0.38             | 0.00      |
| C229    | n1850 | n1852 | 0.45 | 2575.12          | 2574.49        | 2.10                  | 2.10                | 0.18             | 0.00      |
| C230    | n1852 | n1863 | 0.50 | 2574.49          | 2574.07        | 2.10                  | 1.70                | 0.21             | 0.00      |
| C289    | n1787 | n1785 | 0.60 | 2577.05          | 2576.74        | 1.80                  | 2.20                | 0.23             | 0.00      |
| C302    | n1814 | n1810 | 0.30 | 2575.05          | 2574.15        | 1.40                  | 1.50                | 0.08             | 0.00      |
| C339    | n1893 | n1895 | 0.70 | 2574.25          | 2573.83        | 3.50                  | 3.80                | 0.81             | 0.00      |
| C348    | n2188 | n2078 | 0.45 | 2573.27          | 2573.02        | 1.70                  | 1.70                | 0.22             | 0.00      |





| C349    | n2081    | n2078                  | 0.25 | 2573.98 | 2573.22 | 1.50 | 1.50      | 0.05 | 0.01   |
|---------|----------|------------------------|------|---------|---------|------|-----------|------|--------|
| C350    | n2191    | n2188                  | 0.38 | 2573.89 | 2573.27 | 1.60 | 1.70      | 0.13 | 0.00   |
| C387    | n2075    | n2072                  | 0.40 | 2572.86 | 2572.51 | 1.60 | 1.90      | 0.08 | 0.00   |
| C398    | n2052    | n2050                  | 1.00 | 2570.64 | 2570.21 | 2.50 | 2.90      | 1.60 | 0.00   |
| C401    | n2050    | n1969                  | 1.05 | 2570.21 | 2569.80 | 2.90 | 3.10      | 1.66 | 0.00   |
| C402    | n1815    | n1814                  | 0.20 | 2575.90 | 2575.05 | 1.40 | 1.40      | 0.03 | 0.01   |
| C414    | n1809    | n2172                  | 0.40 | 2573.46 | 2573.23 | 1.60 | 2.50      | 0.11 | 0.00   |
| C437    | n1899    | n1969                  | 0.30 | 2572.64 | 2571.40 | 1.50 | 1.50      | 0.06 | 0.01   |
| C439    | n1969    | n1963                  | 1.20 | 2569.80 | 2569.61 | 3.10 | 3.20      | 1.75 | 0.00   |
| C458    | n1959    | n1957                  | 0.70 | 2572.57 | 2571.58 | 1.90 | 1.90      | 0.97 | 0.01   |
| C459    | n1955    | n1950                  | 1.20 | 2568.54 | 2567.93 | 3.70 | 4.20      | 2.93 | 0.00   |
| C487    | n1156    | n1948                  | 0.70 | 2570.33 | 2570.07 | 3.50 | 1.90      | 0.57 | 0.00   |
| C46     | n2078    | n2065                  | 0.70 | 2573.02 | 2572.57 | 1.70 | 1.90      | 0.31 | 0.00   |
| C47     | n2058    | n2055                  | 0.70 | 2572.16 | 2571.64 | 2.40 | 2.00      | 0.51 | 0.00   |
| C48     | n2062    | n2055                  | 0.90 | 2571.83 | 2571.54 | 2.10 | 2.10      | 0.70 | 0.00   |
| C49     | n1818    | n1831                  | 0.30 | 2574.69 | 2574.53 | 1.50 | 1.50      | 0.04 | 0.00   |
| C50     | n1831    | n2178                  | 0.50 | 2574.53 | 2573.62 | 1.50 | 1.80      | 0.18 | 0.00   |
| C51     | n2178    | n2172                  | 0.53 | 2573.62 | 2573.03 | 1.80 | 2.70      | 0.27 | 0.00   |
| C53     | n2172    | n2058                  | 0.60 | 2573.03 | 2572.16 | 2.70 | 2.40      | 0.46 | 0.00   |
| C54     | n1779    | n1850                  | 0.40 | 2575.52 | 2575.12 | 2.60 | 2.10      | 0.10 | 0.00   |
| C55     | N6       | n1891                  | 0.40 | 2576.48 | 2576.06 | 1.60 | 1.90      | 0.11 | 0.00   |
| C56     | n1802    | n2306                  | 0.70 | 2575.54 | 2574.78 | 3.50 | 3.60      | 0.57 | 0.00   |
| C57     | n1891    | n2306                  | 0.45 | 2576.06 | 2575.78 | 1.90 | 2.60      | 0.13 | 0.00   |
| C58     | n2306    | n1893                  | 0.70 | 2574.78 | 2574.25 | 3.60 | 3.50      | 0.75 | 0.00   |
| C59     | n1857    | n1391                  | 0.60 | 2573.16 | 2571.35 | 1.80 | 2.70      | 0.43 | 0.00   |
| C63     | n1950    | n1948                  | 1.35 | 2567.93 | 2567.57 | 4.20 | 4.40      | 2.99 | 0.00   |
| C65     | n1785    | n1802                  | 0.60 | 2576.74 | 2575.84 | 2.20 | 3.20      | 0.32 | 0.00   |
| C1      | n1948    | N1                     | 1.35 | 2567.57 | 2567.11 | 4.40 | 4.80      | 3.59 | 0.00   |
| C2      | N1       | S10                    | 1.40 | 2567.11 | 2566.88 | 4.80 | 4.90      | 3.67 | 0.00   |
| Tubería | Longitud | Relación de<br>llenado | yn   | Theta   | Radio   | Área | Velocidad | tao  | Froude |
| -       | m        | -                      | m    | rad     | m       | m2   | m/s       | Кра  | -      |
| C861    | 66.646   | 0.627                  | 0.19 | 3.65    | 0.09    | 0.05 | 1.72      | 4.87 | 1.37   |
| C862    | 42.287   | 0.670                  | 0.23 | 3.83    | 0.10    | 0.07 | 2.12      | 6.89 | 1.48   |
| C863    | 66.495   | 0.647                  | 0.52 | 3.74    | 0.23    | 0.34 | 1.49      | 3.16 | 0.71   |
| C864    | 247.573  | 0.791                  | 0.63 | 4.38    | 0.24    | 0.43 | 1.37      | 2.67 | 0.54   |
| C865    | 139.933  | 0.653                  | 0.52 | 3.76    | 0.23    | 0.35 | 1.78      | 4.34 | 0.84   |





| C872  | 240.246 | 0.580 | 0.29 | 3.46 | 0.14 | 0.12 | 1.18 | 2.26  | 0.77 |
|-------|---------|-------|------|------|------|------|------|-------|------|
| C873  | 239.032 | 0.633 | 0.38 | 3.68 | 0.17 | 0.19 | 1.18 | 2.15  | 0.66 |
| C881  | 156.096 | 0.748 | 0.75 | 4.18 | 0.30 | 0.63 | 2.41 | 7.26  | 0.90 |
| C882  | 103.317 | 0.669 | 0.40 | 3.83 | 0.17 | 0.20 | 1.31 | 2.61  | 0.70 |
| C883  | 215.835 | 0.775 | 0.78 | 4.31 | 0.30 | 0.65 | 2.38 | 7.09  | 0.86 |
| C899  | 108.296 | 0.677 | 0.20 | 3.86 | 0.09 | 0.05 | 1.84 | 5.50  | 1.38 |
| C906  | 141.409 | 0.674 | 0.20 | 3.85 | 0.09 | 0.05 | 1.02 | 1.87  | 0.77 |
| C910  | 117.546 | 0.640 | 0.34 | 3.71 | 0.15 | 0.15 | 1.28 | 2.54  | 0.75 |
| C923  | 37.289  | 0.533 | 0.37 | 3.27 | 0.18 | 0.21 | 4.04 | 20.49 | 2.36 |
| C939  | 83.839  | 0.694 | 0.83 | 3.94 | 0.35 | 0.84 | 2.13 | 5.64  | 0.78 |
| C940  | 120.733 | 0.684 | 0.48 | 3.90 | 0.21 | 0.28 | 3.30 | 13.84 | 1.61 |
| C943  | 118.844 | 0.735 | 0.88 | 4.12 | 0.36 | 0.89 | 3.18 | 11.84 | 1.11 |
| C944  | 186.277 | 0.799 | 0.96 | 4.42 | 0.37 | 0.97 | 2.97 | 10.38 | 0.94 |
| C975  | 143.363 | 0.694 | 0.37 | 3.94 | 0.16 | 0.16 | 1.96 | 5.53  | 1.08 |
| C651  | 141.672 | 0.547 | 0.14 | 3.33 | 0.07 | 0.03 | 0.87 | 1.49  | 0.84 |
| C1118 | 102.513 | 0.687 | 0.21 | 3.91 | 0.09 | 0.05 | 1.08 | 2.07  | 0.80 |
| C1120 | 129.996 | 0.576 | 0.26 | 3.45 | 0.12 | 0.09 | 1.10 | 2.03  | 0.76 |
| C1138 | 200.470 | 0.699 | 0.42 | 3.96 | 0.18 | 0.21 | 2.55 | 8.83  | 1.32 |
| C208  | 131.367 | 0.657 | 0.39 | 3.78 | 0.17 | 0.20 | 1.91 | 5.20  | 1.04 |
| C229  | 199.967 | 0.656 | 0.30 | 3.78 | 0.13 | 0.11 | 1.62 | 4.06  | 1.02 |
| C230  | 127.951 | 0.599 | 0.30 | 3.54 | 0.14 | 0.12 | 1.70 | 4.37  | 1.08 |
| C289  | 214.897 | 0.628 | 0.38 | 3.66 | 0.17 | 0.19 | 1.25 | 2.41  | 0.70 |
| C302  | 205.344 | 0.672 | 0.20 | 3.84 | 0.09 | 0.05 | 1.50 | 3.78  | 1.13 |
| C339  | 106.005 | 0.785 | 0.55 | 4.35 | 0.21 | 0.32 | 2.50 | 8.26  | 1.06 |
| C348  | 63.801  | 0.697 | 0.31 | 3.95 | 0.13 | 0.12 | 1.84 | 5.10  | 1.10 |
| C349  | 136.572 | 0.658 | 0.16 | 3.78 | 0.07 | 0.03 | 1.51 | 3.93  | 1.26 |
| C350  | 156.803 | 0.652 | 0.25 | 3.76 | 0.11 | 0.08 | 1.64 | 4.25  | 1.12 |
| C387  | 249.386 | 0.653 | 0.26 | 3.76 | 0.12 | 0.09 | 0.96 | 1.58  | 0.64 |
| C398  | 159.398 | 0.746 | 0.75 | 4.17 | 0.30 | 0.63 | 2.55 | 8.11  | 0.96 |
| C401  | 169.128 | 0.731 | 0.77 | 4.10 | 0.31 | 0.68 | 2.44 | 7.41  | 0.91 |
| C402  | 108.197 | 0.591 | 0.12 | 3.51 | 0.06 | 0.02 | 1.52 | 4.24  | 1.55 |
| C414  | 96.440  | 0.661 | 0.26 | 3.80 | 0.12 | 0.09 | 1.28 | 2.69  | 0.85 |
| C437  | 210.673 | 0.520 | 0.16 | 3.22 | 0.08 | 0.04 | 1.62 | 4.42  | 1.47 |
| C439  | 147.894 | 0.763 | 0.92 | 4.25 | 0.36 | 0.93 | 1.89 | 4.51  | 0.63 |
| C458  | 139.145 | 0.694 | 0.49 | 3.94 | 0.21 | 0.29 | 3.39 | 14.51 | 1.63 |
| C459  | 197.619 | 0.787 | 0.94 | 4.37 | 0.36 | 0.96 | 3.07 | 11.04 | 0.99 |
| C487  | 74.971  | 0.624 | 0.44 | 3.64 | 0.20 | 0.25 | 2.24 | 6.84  | 1.17 |
| C46   | 372.944 | 0.612 | 0.43 | 3.59 | 0.20 | 0.25 | 1.25 | 2.35  | 0.66 |





| C47 | 267.475 | 0.731 | 0.51 | 4.10 | 0.21 | 0.30 | 1.68 | 3.99  | 0.77 |
|-----|---------|-------|------|------|------|------|------|-------|------|
| C48 | 350.231 | 0.827 | 0.74 | 4.57 | 0.27 | 0.56 | 1.25 | 2.21  | 0.44 |
| C49 | 115.574 | 0.669 | 0.20 | 3.83 | 0.09 | 0.05 | 0.78 | 1.14  | 0.59 |
| C50 | 535.094 | 0.691 | 0.35 | 3.93 | 0.15 | 0.14 | 1.25 | 2.46  | 0.71 |
| C51 | 214.581 | 0.674 | 0.36 | 3.85 | 0.15 | 0.16 | 1.68 | 4.21  | 0.95 |
| C53 | 209.980 | 0.671 | 0.40 | 3.84 | 0.18 | 0.20 | 2.27 | 7.12  | 1.21 |
| C54 | 237.928 | 0.682 | 0.27 | 3.89 | 0.12 | 0.09 | 1.07 | 1.94  | 0.69 |
| C55 | 175.913 | 0.644 | 0.26 | 3.73 | 0.11 | 0.09 | 1.28 | 2.69  | 0.86 |
| C56 | 354.487 | 0.776 | 0.54 | 4.31 | 0.21 | 0.32 | 1.79 | 4.46  | 0.77 |
| C57 | 168.823 | 0.695 | 0.31 | 3.94 | 0.13 | 0.12 | 1.13 | 2.10  | 0.68 |
| C58 | 134.848 | 0.730 | 0.51 | 4.10 | 0.21 | 0.30 | 2.48 | 8.17  | 1.14 |
| C59 | 533.205 | 0.694 | 0.42 | 3.94 | 0.18 | 0.21 | 2.05 | 5.90  | 1.06 |
| C63 | 202.694 | 0.792 | 1.07 | 4.39 | 0.41 | 1.22 | 2.46 | 7.19  | 0.75 |
| C65 | 442.656 | 0.692 | 0.42 | 3.93 | 0.18 | 0.21 | 1.55 | 3.52  | 0.80 |
| C1  | 156.655 | 0.736 | 0.99 | 4.13 | 0.41 | 1.13 | 3.18 | 11.58 | 1.04 |
| C2  | 100.189 | 0.770 | 1.08 | 4.28 | 0.42 | 1.27 | 2.88 | 9.60  | 0.89 |