

Facultad de Ingeniería

Departamento de Ingeniería Civil y Ambiental

Modelación de Flujo Turbulento Hidráulicamente Liso en Tuberías Largas de PVC

Proyecto de Grado en Ingeniería Ambiental

Presentado por: Jessica Paola Páez Pedraza

Asesor: Ing. Juan G. Saldarriaga

Bogotá D.C., Diciembre de 2013

AGRADECIMIENTOS

En primer lugar, quiero agradecer a mi familia, en especial a mis padres y hermano por su apoyo incondicional a lo largo de toda mi vida. A Rafael, por su amor, apoyo y compañía a lo largo de mi carrera universitaria.

Por otro lado, quiero agradecer al Ingeniero Juan Saldarriaga por su asesoría y apoyo durante el desarrollo del proyecto.

Quiero agradecer al Ingeniero de PAVCO Francisco Mendoza y a los asistentes graduados del CIACUA por su gran colaboración durante el desarrollo de esta tesis.

Finalmente, agradezco a todos aquellos que de una u otra forma brindaron su colaboración para la exitosa culminación de esta tesis, así como todos aquellos quienes me apoyaron a lo largo de mi carrera universitaria.

Tabla de Contenido

1. Introducción	1
1.2 Objetivos	2
1.2.1 Objetivo General	2
1.2.2 Objetivos Específicos	2
2. Antecedentes	4
2.1 Estudio de las ecuaciones que describen el flujo turbulento hidráulicamente liso:	
revisión del diagrama de Moody y de las ecuaciones de Colebrook-White y de Blasius. Tesis elaborada por Laura Nieto	4
2 2 Estudio sobre factores que favorecen la generación y crecimiento de algas en rede	s de
distribución de agua potable. Tesis elaborada por Sara Gacharná.	5
2.3 Estudio sobre crecimiento de algas y cianobacterias y su efecto hidráulico en una	
tubería de PVC de 6 pulgadas. Tesis elaborada por Lizeth Jiménez	8
3. Marco Teórico	11
3.1 Número de Reynolds	11
3.2 Concepto de Capa Límite	12
3.3 Concepto de Subcapa Laminar Viscosa	13
3.4 Ecuación de Darcy-Weisbach	15
3.5 Diagrama de Nikuradse	16
3.7 Ecuaciones para el Factor de Fricción	20
3.7.1 Ecuación para flujo laminar	20
3.72 Ecuación de Blasius	21
3.73 Ecuaciones de Prandtl y von Kárman	21
3.74 Ecuaciones de Colebrook y White	21
3.10 Pérdidas Menores	22
4. Modelo Físico	24
4.1 Descripción del Modelo	24
4.2 Instrumentación del Modelo	28
4.3 Cálculo caudal del Vertedero	31
4.4 Cálculo de la Viscosidad Cinemática	32
4.5 Nivelación del Terreno	33
4.6 Mantenimiento del Cloro Residual Libre en el Sistema	37
4.7 Adición de Alguicida	38
5. Determinación de las Pérdidas por Fricción y Rugosidad Absoluta	38
6. Resultados y Comparación con Tesis Anteriores	43
6.1 Aspectos Fisicoquímicos	43

6.2 Aspectos Hidráulicos	45
6.2.1 Factor de Fricción hallado con los datos de los sensores	45
6.2.2 Error Inducido por la Posición de la Manguera del Sensor de Presión Diferencial	46
6.2.3 Factor de Fricción hallado con los datos manuales (Vertedero y manómetros)	51
6.2.4 Diagrama de Moody basado en las diferentes ecuaciones desarrolladas	51
6.2.6 Análisis del Factor "a"	59
7. Conclusiones y Recomendaciones	64
7.1 Modelo Físico	64
7.2 Resultados Experimentales	64
8. Bibliografía	66
ANEXO I	67
ANEXO II	98

Índice de Figuras

Figura 1 Diagrama de Moody datos hallados por Sara Gacharná (Gacharná, 2011)	7
Figura 2 Algas en los gaviones del vertedero	9
Figura 3 Diagrama de Moody Datos hallados por Lizeth Jimenez (Jiménez, 2012)	10
Figura 4 Capa Límite (Saldarriaga, 2007)	12
Figura 5 Subcapa laminar viscosa (Saldarriaga, 2007)	13
Figura 6 Flujo Turbulento Hidráulicamente liso e Hidráulicamente Rugoso (Saldarriaga, 2007)	14
Figura 7 Diagrama de Nikuradse (Universidad de Sevilla, 2007)	16
Figura 8 Diagrama de Rugosidades Relativas (Orozco)	19
Figura 9 Diagrama de Moody (White)	20
Figura 10 Unión tubería principal	24
Figura 11 Plano en Planta del Montaje	25
Figura 12 Corte longitudinal tanque de almacenamiento	26
Figura 13 Corte longitudinal vertedero rectangular	26
Figura 14 Vertedero Rectangular	26
Figura 15 Corte transversal tanque elevado	27
Figura 16 Vertedero rectangular	28
Figura 17 Motobomba	28
Figura 18 Tanque de almacenamiento	29
Figura 19 Tablero manométrico	29
Figura 20 Tanque elevado	29
Figura 21 Sensor de presión diferencial	29
Figura 22 Caudalímetro	
Figura 23 Válvula reguladora de caudal	
Figura 24 Mangueras de manómetros y sensor de presión diferencial	
Figura 25 Software del montaje	
Figura 26 Curva de calibración del vertedero (Nieto, 2011)	31
Figura 27 Curva determinación de la viscosidad cinemática (Nieto, 2011)	32
Figura 28 Perfil de la tubería	34
Figura 29 Terreno sobre el cual reposa la tubería	34
Figura 30 Manómetro en tubería inclinada	35
Figura 31 Diagrama de flujo cálculo del factor de fricción y rugosidad relativa	39
Figura 32 Kit de medición de cloro libre y pH	43
Figura 33 Concentración de cloro libre a lo largo del tiempo	44
Figura 34 pH a lo largo del tiempo	44
Figura 35 Posición de la manguera del sensor de presión diferencial (Gacharná, 2011)	47
Figura 36 Posición actual de la manguera del sensor diferencial	47
Figura 37 Diagrama de Moody datos sensores Km=0 (Comparación Tesis anteriores)	48
Figura 38 Diagrama de Moody Datos sensores Km=0.01 (Comparación Tesis Anteriores)	49
Figura 39 Diagrama de Moody Datos sensores Km=0.03 (Comparación Tesis Anteriores)	50
Figura 40 Diagrama de Moody datos manuales (Vertedero y manómetros)	53
Figura 41 Compobación zona de transición	54
Figura 42 Comparación Rugosidad absoluta	57

Figura 43 Comparación Factor "a"	58
Figura 44 Análisis factor "a" (Ajuste para todos los datos)	61
Figura 45 Análisis factor "a" (Curva logarítmica Números de Reynolds bajos)	62
Figura 46 Análisis factor "a" (Media Móvil)	63

Índice de Ecuaciones

Ecuación 1 Número de Reynolds	11
Ecuación 2 Espesor subcapa laminar viscosa	13
Ecuación 3 Velocidad de corte	13
Ecuación 4 Espesor subcapa laminar viscosa para FTHL	14
Ecuación 5 Espesor subcapa laminar viscosa para FTHR	14
Ecuación 6 Espesor subcapa laminar viscosa para FTT	14
Ecuación 7 Expresión planteada por Darcy	15
Ecuación 8 Ecuación de Darcy-Weisbach	15
Ecuación 9 Factor de fricción para flujo laminar	20
Ecuación 10 Ecuación de Blasius del factor de fricción para FTHL	21
Ecuación 11 Ecuación de Prandtl-von Kárman para FTHL	21
Ecuación 12 Ecuación de Prandtl - von Kárman para FTHR	21
Ecuación 13 Ecuación de Colebrook-White para FTHL	22
Ecuación 14 Ecuación de Colebrook-White para FTHR	22
Ecuación 15 Ecuación de Colebrook-White para FTT	22
Ecuación 16 Pérdidas menores	23
Ecuación 17 Curva de calibración del vertedero	
Ecuación 18 Curva viscosidad cinemática	32
Ecuación 19 Cálculo pérdidas de energía	
Ecuación 20 Cálculo pérdidas por fricción	45
Ecuación 21 Cálculo factor de fricción con ecuación de Darcy-Weisbach	45
Ecuación 22 Pérdidas de energía totales	51
Ecuación 23 Rugosidad absoluta a partir de la ecuación de Colebrook-White	55
Ecuación 24 Factor "a"	55
Ecuación 25 Ks' con el factor "a"	56
Ecuación 26 Media móvil	59
Ecuación 27 Función logarítmica factor "a" Reynolds menores a 210000	59
Ecuación 28 Función logarítmica factor "a" (media móvil) para Reynolds menores a 210000	60

Índice de tablas

Tabla 1 Levantamiento topográfico del terreno	33
Tabla 2 Volumen de agua almacenado en el sistema (Nieto, 2011)	37

1. Introducción

Desde hace algo más de 150 años, se han realizado diferentes investigaciones con el fin de encontrar ecuaciones que representen la resistencia fluida en tuberías circulares fluyendo a presión. La ecuación más general encontrada fue la propuesta por J.T Fanning, la cual reunía los resultados de las investigaciones realizadas por Henry Darcy y Julius Weisbach, conocida como la ecuación de Darcy-Weisbach. Este tipo de investigaciones se han realizado con el propósito de encontrar expresiones que permitan el diseño de redes de distribución de agua potable.

Esta ecuación se deduce mediante análisis dimensional, por lo cual es físicamente basada y dimensionalmente homogénea. Adicionalmente, predice las pérdidas de altura piezométrica debido al esfuerzo cortante entre el flujo y las paredes internas de la tubería en función de su diámetro, la longitud en la cual se mide esta pérdida de energía, la velocidad media del flujo, la rugosidad absoluta de la tubería, la aceleración de la gravedad, la densidad y la viscosidad cinemática del fluido.

La ecuación de Darcy-Weishbach introduce un término f (factor de fricción) el cual es adimensional y consistente con cualquier sistema de unidades. Sin embargo, el factor de fricción es una función muy compleja, dado que depende de la velocidad del flujo, la viscosidad cinemática, el diámetro de la tubería y la rugosidad de esta. Por lo anterior, se desarrollaron diferentes investigaciones con el fin de encontrar una ecuación que describiera el factor de fricción. Durante estas investigaciones se encontraron varias expresiones para los diferentes tipos de flujo, laminar y turbulento; este último puede que ser hidráulicamente liso (FTHL), rugoso (FTHR) o transicional (FTT).

En 1939 los investigadores Colebrook y White estudiaron el flujo transicional, con el fin de encontrar una expresión del factor de fricción para este tipo de flujo, llegando a una expresión que dependía de la rugosidad relativa de la tubería y del número de Reynolds, ecuación que resultó ser válida para todo el rango turbulento.

En este trabajo se presentan los resultados de una investigación efectuada en las instalaciones de PAVCO, empresa dedicada a la producción de soluciones para la conducción de fluidos con sistemas de tuberías, conexiones y otros productos plásticos. Se desarrolla el proyecto con el uso de un modelo físico construido a partir de una alianza entre la Universidad de los Andes y esta empresa, con el propósito de realizar una revisión de las ecuaciones de Colebrook-White a fin de establecer su precisión en términos de la estimación del factor de fricción, el cual determina las pérdidas de energía por rozamiento en una tubería.

1.1 Justificación

En la actualidad, los nuevos materiales de los cuales están fabricadas las tuberías permiten que se desarrollen altas velocidades con flujos turbulentos hidráulicamente lisos, flujo para el cual el factor de fricción se ve alterado en mayor grado por el número de Reynolds y en menor proporción por la rugosidad de la tubería. Por lo anterior, el factor de fricción estimado por medio de las ecuaciones de Colebrook-White es solo una aproximación ya que los experimentos utilizados para el desarrollo de estas ecuaciones, fueron realizados con tuberías mucho más rugosas que las que se encuentran hoy en día.

En la presente tesis se revisará la ecuación de Colebrook-White, con el fin de modificar parámetros presentes en esta que permitan estimar el factor de fricción para flujo turbulento hidráulicamente liso, de manera que sea aplicable al comportamiento del flujo en las tuberías de materiales comerciales disponibles en la actualidad.

Esto permitirá realizar diseños óptimos en términos técnicos y económicos, ya que la sub estimación o sobre estimación podrían generar diseños más grandes y más costosos de lo necesario o por el contrario, no permitir el flujo de agua suficiente en las redes.

1.2 Objetivos

1.2.1 Objetivo General

Determinar las pérdidas por fricción y la rugosidad absoluta en tuberías modernas, mediante la medición de la caída de presión en un modelo físico que consta de una tubería de PVC de 76.79 metros con uniones.

Así mismo, se busca analizar estos resultados con el fin de concluir si es necesario modificar las ecuaciones usadas para determinar el factor de fricción en tuberías con flujo turbulento hidráulicamente liso.

1.2.2 Objetivos Específicos

- Analizar la influencia de la rugosidad de los materiales de las tuberías disponibles en la actualidad en el cálculo del factor de fricción.
- Realizar pruebas de pérdidas por fricción en el modelo físico para determinar la rugosidad absoluta de la tubería y compararla con la rugosidad teórica para tuberías de PVC.

- Comparar los resultados hallados del comportamiento del factor de fricción con los obtenidos en estudios anteriores a este, en los cuales se permitió el crecimiento de algas y cianobacterias al interior de la tubería.
- Concluir sobre la aplicabilidad de las ecuaciones para el cálculo del factor de fricción que se utilizan actualmente en las tuberías modernas, a partir del análisis de los resultados obtenidos.

2. Antecedentes

La Universidad de los Andes han venido desarrollando diferentes proyectos en los cuales se han llevan a cabo investigaciones acerca de las pérdidas por fricción en RDAP'S. En estos estudios se ha analizado la aplicabilidad de las ecuaciones de cálculo del factor de fricción para tuberías modernas. Adicionalmente, se han realizado estudios en los cuales se analiza el efecto hidráulico que producen el crecimiento de biopelículas y algas al interior de la tubería. A continuación se reseñan las tesis efectuadas anteriormente con el modelo de pérdidas por fricción desarrollado por PAVCO y la Universidad de los Andes.

2.1 Estudio de las ecuaciones que describen el flujo turbulento hidráulicamente liso: revisión del diagrama de Moody y de las ecuaciones de Colebrook-White y de Blasius. Tesis elaborada por Laura Nieto.

En el año 2011 con la tesis de Laura Nieto se inició una investigación centrada en las pérdidas por fricción en tuberías modernas, por medio de un montaje instalado en la planta de PAVCO. Al finalizar la construcción del montaje se realizaron pruebas para conocer que tipo de flujo se presentaba en la tubería. Por lo anterior, se compararon los resultados obtenidos con el Diagrama de Moody, determinando que estos se encontraban justo debajo de la zona de transición establecida por Colebrook-White, comprobando que en la tubería se presenta Flujo Turbulento Hidráulicamente Liso (FTHL). Debido a que en ocasiones se presentó flujo transicional, se aconsejó realizar la verificación del tipo de flujo mediante el cálculo del espesor de la subcapa laminar viscosa. Sin embargo, se corroboró que para que el flujo se comportara como flujo transicional era necesario que se presentaran caudales y velocidades muy altas, las cuales se encuentran alejadas de los límites máximos para redes de distribución de agua potable (Nieto, 2011).

En su Tesis, Laura Nieto expresa que teniendo en cuenta que las pruebas experimentales se realizaron al aire libre, se requiere un mayor cuidado de ciertas variables que pueden alterar las condiciones ambientales y físicas del montaje. De acuerdo a lo anterior la autora de esta tesis propuso las siguientes recomendaciones para futuros estudios que empleen el modelo físico:

- Antes de comenzar las mediciones de los manómetros, las mangueras de estos se deben purgar adecuadamente. Debido a la longitud de las mangueras este proceso puede ser bastante largo, pero mantener las mismas libres de aire garantiza unas medidas más estables y confiables (Nieto, 2011).
- Se recomienda el uso de manómetros inclinados para ampliar la lectura de la diferencia de presión en los mismos y reducir el error en su lectura, especialmente en el caso de caudales

bajos en el cual la diferencia de presión no es muy grande y la inestabilidad de la lectura puede generar errores de hasta un 30% (Nieto, 2011).

- Para garantizar la estabilidad de las mediciones, también es importante mantener control en tiempo real del nivel del agua en el tanque de alimentación (Nieto, 2011).
- Se debe verificar que el sistema no presente fugas por ningún lado para evitar errores adicionales en las mediciones (Nieto, 2011).
- Antes de comenzar las mediciones en cada prueba, se debe verificar que el sistema se haya estabilizado para evitar datos iniciales que generen ruido en el total de datos y alteren el resultado final (Nieto, 2011).

2.2 Estudio sobre factores que favorecen la generación y crecimiento de algas en redes de distribución de agua potable. Tesis elaborada por Sara Gacharná.

En esta tesis, se llevaron a cabo pruebas en el montaje diseñado como resultado de la tesis adelantada por Laura Nieto. Se realizó con el fin de evaluar el efecto hidráulico del crecimiento de algas y cianobacterias. Para favorecer el crecimiento de algas en la tubería se suministró semanalmente fosfato di amónico, fertilizante compuesto por fósforo y nitrógeno, elementos fundamentales para el crecimiento de algas y cianobacterias. Fue utilizado este compuesto ya que uno de los mayores riesgos de contaminación de las redes de distribución de agua potable es el uso de fertilizantes en cultivos cercanos a la red matriz o represa de la RDAP. Adicionalmente, se recirculó el agua diariamente durante 8 horas y se mantuvo una concentración de cloro residual de 0,5 mg/L con el fin de cumplir con la normativa para RDAPs (Gacharná, 2011).

Para comprobar si el flujo que se presentaba en la tubería no se encontraba en la zona de transición, se utilizó el Diagrama de Moody en donde se observó que la mayoría de los datos tomados durante el estudio se encontraban ubicados por debajo del límite teórico para FTHL establecido por Colebrook-White, como puede verse en la Figura 1. Al calcular la rugosidad absoluta de la tubería, a partir de los factores de fricción obtenidos anteriormente, se encontraron valores que coincidían con los rangos reportados por la literatura, sin embargo se también se hallaron valores mucho más bajos e incluso se observaron valores negativos, los cuales carecían de sentido.

Por otro lado, en esta tesis se realizaron pruebas microbiológicas durante las últimas semanas de estudio, por medio de la técnica de microscopía electrónica de barrido. Al comparar la morfología de las imágenes obtenidas por este método y fotos de estructuras de algas y cianobacterias, se encontraron microorganismos que al parecer hacen parte del género

Phormidium e *Hydrodictyon* de las cianobacterias. Adicionalmente, en los resultados obtenidos del análisis de los testigos se observaron estructuras filamentosas; sin embargo se planteó la posibilidad de que estas estructuras podrían pertenecer a fragmentos de agua congelada debido al método utilizado para la observación en el microscopio (platina de enfriamiento), por lo cual Sara Gacharná en su tesis recomendó para estudios posteriores realizar otras pruebas de tipo molecular, de detección usando kits de ausencia/presencia, o el aislamiento en medios específicos para algas y cianobacterias y de esta forma pudiera garantizarse la absoluta validez de los resultados microbiológicos (Gacharná, 2011).

IAMB 2013-20

Figura 1 Diagrama de Moody datos hallados por Sara Gacharná (Gacharná, 2011)

2.3 Estudio sobre crecimiento de algas y cianobacterias y su efecto hidráulico en una tubería de PVC de 6 pulgadas. Tesis elaborada por Lizeth Jiménez.

En esta tesis al igual que la anterior se permitió el crecimiento de algas y cianobacterias al interior de la tubería, adicionando fosfato di amónico. Se comprobó la presencia de algas y cianobacterias por medio de kits de ausencia y presencia, los cuales son soluciones con nutrientes necesarios para el desarrollo de estas. Se observó que existían algas tanto en los testigos como en el vertedero y gaviones (Ilustración 1); esto se evidenció en el cambio de color de las muestras a verde intenso. Sin embargo, para el caso de las cianobacterias el cambio de color no fue evidente, por lo cual no se pudo asegurar la presencia de estos microorganismos en el montaje.

A lo largo de las mediciones se observó un aumento en el factor de fricción mayor a lo esperado, por lo cual la autora de esta tesis planteó la hipótesis de presencia de lechos móviles en el fondo de la tubería, debido a precipitados de materiales extraños, material vegetal y humus dentro del sistema que ingresan a este debido a que los tanques de almacenamiento y alimentación no se encuentran cubiertos adecuadamente (Jiménez, 2012).

Al analizar el factor de fricción, la rugosidad absoluta y la ubicación de los puntos de medición en el diagrama de Moody, Lizeth Jiménez observó que para los casos en los cuales las rugosidades eran positivas, los puntos se encontraban por encima del límite de 2.51, sin embargo para los valores negativos de la rugosidad los datos se ubicaban por debajo de este límite. Adicionalmente, se compararon los resultados hallados en esta tesis con los resultados encontrados en la tesis de Sara Gacharná, como se muestra en la Figura 3 (Jiménez, 2012).

Por otra parte, al comparar los datos obtenidos con el diagrama de Moody se observó que el flujo se mantuvo como FTHL según el límite establecido por Colebrook-White, lo cual ratifica que el flujo no se encuentra en la zona de transición.

Finalmente, se calculó la rugosidad absoluta por medio de otro método; en el cual se reemplazaba la constante 2.51 en la ecuación de Colebrook-White, por una variable "a". Cuando se recalculó la rugosidad absoluta con la ecuación de Colebrook-White modificada; Lizeth Jiménez encontró que la mayoría de los valores eran cero o muy cercanos a cero, en donde ella refiere que esto puede explicarse debido a que los materiales con los cuales se fabrican las tubería actualmente como el PVC, pueden ser considerados demasiado lisos para utilizar el análisis convencional en el estudio de la hidráulica de tuberías. Por lo anterior, la autora de esta tesis recomienda que para estudios posteriores se plantee una nueva ecuación con el fin de realizar el análisis más apropiado para las rugosidades de los nuevos materiales de las tuberías (Jiménez, 2012).

Figura 2 Algas en los gaviones del vertedero

Universidad de los Andes

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC

IAMB 2013-20

Figura 3 Diagrama de Moody Datos hallados por Lizeth Jimenez (Jiménez, 2012)

3. Marco Teórico

En el presente capitulo se realiza una revisión bibliográfica sobre las ecuaciones para el cálculo las pérdidas de energía por fricción para flujo turbulento hidráulicamente liso, empezando por el desarrollo de la ecuación de Darcy-Weisbach, mencionando también el trabajo de Moody y su diagrama, finalizando con las investigaciones realizadas por Colebrook y White.

Los referentes teóricos aquí presentados se fundamentan en gran parte en los aportes del libro: "Hidráulica de tuberías, redes, riegos", cuyo autor es el Ingeniero Juan Guillermo Saldarriaga Valderrama los cuales orientan el análisis y comprensión de los conceptos básicos y fundamentales utilizados en el desarrollo de esta tesis.

3.1 Número de Reynolds

El número de Reynolds es un número adimensional que depende de la velocidad del flujo, la viscosidad cinemática y de una longitud significativa, que para el caso de tuberías es el diámetro de estas. Para tuberías de sección circular cuando el número de Reynolds es menor a 2000, las fuerzas viscosas predominan sobre las inerciales y el flujo es laminar. Para el caso en el cual el número de Reynolds se encuentra entre 2000 y 5000, el flujo es transicional y para valores superiores a 5000 las fuerzas viscosas ya no tienen mayor influencia por lo cual el flujo se comporta como turbulento (Saldarriaga, 2007).

$$Re = \frac{d * v}{v}$$

Ecuación 1 Número de Reynolds

dónde:

Re : número de Reynolds

v: viscosidad cinemática

d: diámetro de la tubería

De acuerdo con lo anterior el flujo puede clasificarse en tres categorías.

IAMB 2013-20

Flujo Laminar: En este tipo de flujo las fuerzas viscosas priman sobre las fuerzas inerciales, por lo cual se cumple la ecuación de Newton para fluidos viscosos. Adicionalmente, el flujo se mueve en capas sin intercambio de "paquetes" de fluido entre ellas (Saldarriaga, 2007).

Flujo transicional: A medida que las fuerzas viscosas pierden importancia frente a las inerciales el flujo pasa de ser laminar a turbulento; sin embargo este cambio es gradual este tipo de flujo se llama flujo de transición o transicional (Saldarriaga, 2007).

Flujo turbulento: En este tipo de flujo se presenta intercambio de "paquetes" de moléculas de fluido entre las capas que se mueven a diferente velocidad, por lo cual las partículas no tienen una velocidad bien definida y es necesario hablar de velocidad promedio (Saldarriaga, 2007).

3.2 Concepto de Capa Límite

Según Prandtl, cuando un fluido en movimiento interactúa con una pared sólida, el esfuerzo cortante generado por esta interacción afecta una zona del flujo en cercanías de la pared de la tubería o canal, esta zona es llamada capa límite. En esta zona se sienten intensamente los efectos de la viscosidad y el rozamiento, por lo cual la distribución de velocidades del flujo se ve afectada. Fuera de esta el fluido se comporta como un fluido ideal; si esta capa no existiera no existirían fuerzas de fricción que trataran de frenar el movimiento del fluido, hecho que diferencia un fluido ideal de uno real (Saldarriaga, 2007). En la Figura 4 es posible observar este efecto, donde δ corresponde al espesor de la capa límite, la cual puede ser del orden de micras o milímetros según sea el caso (Schlichting, 1979).

Figura 4 Capa Límite (Saldarriaga, 2007)

3.3 Concepto de Subcapa Laminar Viscosa

Cuando se presenta flujo turbulento se genera una zona de flujo laminar dentro de la capa límite; esta se denomina subcapa laminar viscosa, se le llama viscosa ya que en esta predominan las fuerzas viscosas sobre las inerciales y su espesor es mucho menor que el de la capa límite. Adicionalmente, la relación entre el espesor de la subcapa laminar viscosa y la rugosidad de las paredes internas de la tubería establece la diferencia entre flujo turbulento hidráulicamente liso e hidráulicamente rugoso.

Figura 5 Subcapa laminar viscosa (Saldarriaga, 2007)

Cuando el espesor de la subcapa laminar viscosa es mayor que el tamaño de la rugosidad de la tubería el flujo se comporta como hidráulicamente liso, mientras que si el espesor de esta es menor que la rugosidad, el flujo se comporta como hidráulicamente rugoso (Saldarriaga, 2007). A continuación se presenta la ecuación por la cual es posible calcular el espesor de esta capa.

$$\delta' = \frac{11.6\nu}{\nu^*}$$

Ecuación 2 Espesor subcapa laminar viscosa

dónde:

 δ' : Espesor de la subcapa laminar viscosa

v: Viscosidad cinemática

v^{*}: Velocidad de corte

La velocidad de corte mide la magnitud relativa del esfuerzo cortante generado en la interacción superficie- fluido y se determina mediante la siguiente expresión.

$$v^* = \sqrt{\frac{\tau_0}{\rho}} = \bar{v} \sqrt{\frac{f}{8}}$$

Ecuación 3 Velocidad de corte

Figura 6 Flujo Turbulento Hidráulicamente liso e Hidráulicamente Rugoso (Saldarriaga, 2007)

De acuerdo con lo anterior, por medio de los estudios realizados por Colebrook y White se definieron los límites para cada tipo de flujo dependiendo del espesor de la subcapa laminar viscosa y la rugosidad de la tubería, como se muestra a continuación:

Flujos hidráulicamente lisos: La rugosidad absoluta es menor que la subcapa laminar viscosa, por lo cual ningún punto se ve afectado por las turbulencias producidas por las rugosidades. Para que se presente este tipo de flujo el tamaño de la rugosidad debe ser inferior al 30% del espesor de la subcapa laminar viscosa (Saldarriaga, 2007).

 $k_s \leq 0.305\delta'$

Ecuación 4 Espesor subcapa laminar viscosa para FTHL

Flujos hidráulicamente rugosos: El tamaño de la rugosidad absoluta de la pared interna de la tubería es mayor que el espesor de la subcapa laminar viscosa, por lo cual las pérdidas de energía y por tanto el factor de fricción son función de la rugosidad relativa de la tubería. Para que se presente este flujo el tamaño de la rugosidad debe ser superior a 6 veces el espesor de la subcapa laminar viscosa (Saldarriaga, 2007).

$$k_s \ge 6.10\delta'$$

Ecuación 5 Espesor subcapa laminar viscosa para FTHR

Flujos en transición: El espesor de la subcapa laminar viscosa se aproxima al valor medio de la rugosidad absoluta, por lo cual el tamaño de la rugosidad es superior al de la subcapa laminar viscosa de manera intermitente. Para que se presente este tipo de flujo la rugosidad absoluta debe estar entre los siguientes límites (Saldarriaga, 2007).

$$0.305\delta' < k_s \le 6.10\delta'$$

Ecuación 6 Espesor subcapa laminar viscosa para FTT

3.4 Ecuación de Darcy-Weisbach

Desde mediados del siglo XIX se han realizado investigaciones con el fin de representar la resistencia fluida en tuberías a presión; la expresión más general para el caso de tuberías circulares es la ecuación de Darcy-Weisbach, resultado del trabajo de J.T Fanning al combinar los resultados encontrados en los datos experimentales de Henry Darcy con la ecuación de Julius Weisbach.

Darcy realizó experimentos con tuberías de diámetros entre 0.0122 hasta 0.5 m y con materiales incluidos el vidrio, plomo, hierro, hierro recubierto de bitumen, hierro fundido y latón. De acuerdo a la caída piezométrica hallada en estos experimentos, Darcy propuso que los datos experimentales se ajustaban a la siguiente ecuación.

 $RS_f = av + bv^2$

Ecuación 7 Expresión planteada por Darcy

dónde:

R: radio hidráulico

 S_f : pendiente de fricción

v: velocidad media

a, b: coeficientes que describen la edad del material de la tubería.

Finalmente, en 1985 se llegó a la ecuación que se utiliza hoy en día, la cual se ajusta a los datos experimentales y es fácilmente deducible por medio de análisis dimensional, lo cual la hace una ecuación físicamente basada:

$$h_f = f \frac{l}{d} \frac{v^2}{2g}$$

Ecuación 8 Ecuación de Darcy-Weisbach

dónde:

 h_f : pérdidas de energía por fricción

f: factor de fricción de Darcy

l: longitud en la cual se pierde h_f

d: diámetro de la tubería

v: velocidad media del flujo

g: aceleración de la gravedad

Ahora bien, el factor de fricción de Darcy es una función compleja, ya que depende de la velocidad del flujo, la densidad y viscosidad del fluido, el diámetro y la rugosidad de la tubería, por lo cual tomó cerca de 100 años definir una ecuación que describiera el factor de fricción.

3.5 Diagrama de Nikuradse

En 1933 Johann Nikuradse, alumno de Prandtl realizó diversos experimentos con tuberías de diferentes diámetros, en cuyas paredes internas pegó arenas de granulometría uniforme, encontrando así una relación k_s/d conocida, llamada rugosidad relativa. En cada una de las tuberías varió el caudal de tal forma que obtuvo flujos desde laminar hasta turbulento hidráulicamente rugoso. Los resultados de sus experimentos se plasmaron en lo que se conoce como el Diagrama de Nikuradse.

Figura 7 Diagrama de Nikuradse (Universidad de Sevilla, 2007)

De acuerdo con los resultados hallados por Nikuradse, se evidencia lo siguiente:

• Para flujo laminar, el factor de fricción varía linealmente con respecto al número de Reynolds y es una función inversa de este, independiente de la rugosidad relativa de la tubería.

- Cerca del número de Reynolds crítico (2200) las curvas coinciden y empiezan a separarse las curvas correspondientes a diferentes rugosidades relativas.
- Las tuberías con mayor rugosidad relativa se separan más rápido de la curva lisa, esto debido a que disminuye el espesor de la subcapa laminar viscosa. De esta manera el flujo pasa de ser turbulento hidráulicamente liso a hidráulicamente rugoso de forma gradual.
- Una vez las curvas se separan de la curva lisa el factor de fricción se vuelve una función compleja del número de Reynolds y la rugosidad relativa (Flujo transicional).
- A medida que el número de Reynolds aumenta las curvas para diferentes rugosidades relativas se vuelven horizontales, lo cual evidencia que el factor de fricción deja de depender del número de Reynolds (Saldarriaga, 2007).

3.6 Diagrama de Moody

A principios de la década de 1940, el ingeniero norteamericano Lewis Moody investigó acerca de las pérdidas por fricción en tuberías reales. Moody realizó experimentos con tuberías comerciales de diferentes materiales, entre ellos acero, acero bridado, hierro dulce, hierro galvanizado, concreto, entre otras. Moody calculó las pérdidas por fricción para flujo turbulento hidráulicamente rugoso, de tal forma que logró calcular la rugosidad absoluta de las tuberías.

Moody encontró que la rugosidad de las tuberías comerciales, si bien es bastante diferente de la rugosidad artificial obtenida en los experimentos de Nikuradse, era posible obtener una rugosidad equivalente de arena para cada material. De acuerdo con lo anterior, Moody desarrolló lo que se conoce como el diagrama de Moody modificado o diagrama de rugosidades relativas, el cual se muestra en la Figura 7 (Saldarriaga, 2007).

Adicionalmente, Moody desarrolló un diagrama en el cual se relacionaba el factor de fricción con el número de Reynolds y las diferentes rugosidades relativas, similar al diagrama de Nikuradse. En el diagrama de Moody se evidencia lo siguiente:

- La primera zona corresponde a flujo laminar, en esta zona las fuerzas viscosas priman sobre las inerciales y el factor de fricción es una función lineal del número de Reynolds.
- Para una rugosidad relativa dada el factor de fricción disminuye con el aumento del número de Reynolds, hasta que alcanza la turbulencia completa.

- Dentro de la zona de turbulencia completa (flujo turbulento hidráulicamente rugoso) el número de Reynolds no tiene ningún efecto sobre el factor de fricción (Mott, 2006).
- Las curvas correspondientes a cada rugosidad relativa se aproximan a la curva lisa de manera asintótica.
- En la zona de transición existe una gran diferencia con el diagrama de Nikuradse, ya que las tuberías con rugosidades artificiales de Nikuradse tenían un tamaño uniforme, por lo cual al disminuir el espesor de la subcapa laminar viscosa el efecto de la rugosidad se siente simultáneamente. Mientras que en las tuberías reales la rugosidad no es uniforme, por lo cual el cambio es gradual, como se muestra en el diagrama de Moody (Saldarriaga, 2007).

Figura 9 Diagrama de Moody (White)

3.7 Ecuaciones para el Factor de Fricción

A continuación se presenta un resumen de las diferentes ecuaciones encontradas para expresar el factor de fricción.

3.7.1 Ecuación para flujo laminar

Para el caso de flujo laminar Weisbach encontró que el factor de fricción era inversamente proporcional al número de Reynolds, como se muestra a continuación:

$$f = \frac{64}{Re}$$

Ecuación 9 Factor de fricción para flujo laminar

3.72 Ecuación de Blasius

Para el caso de flujo turbulento hidráulicamente liso, en 1911 P.R.H Blasius empíricamente encontró una ecuación para f válida para números de Reynolds entre 5000 y 100.000 que dependía del número de Reynolds.

 $f = \frac{0.316}{Re^{0.25}}$ Ecuación 10 Ecuación de Blasius del factor de fricción para FTHL

3.73 Ecuaciones de Prandtl y von Kárman

Con base en los experimentos realizados por Johan Nikuradse y la teoría de longitud de mezcla, Prandtl y Von-Kárman desarrollaron las primeras ecuaciones para determinar el factor de fricción en tuberías con flujo turbulento hidráulicamente liso y rugoso (no explícitas para f), como se muestra a continuación:

Flujo turbulento hidráulicamente liso

$$\sqrt{\frac{1}{f}} = 2.035 \log(R_e \sqrt{f}) - 0.924$$

Ecuación 11 Ecuación de Prandtl-von Kárman para FTHL

Flujo turbulento hidráulicamente rugoso

$$\sqrt{\frac{1}{f}} = 2\log(R_e\sqrt{f}) - 0.8$$

Ecuación 12 Ecuación de Prandtl - von Kárman para FTHR

3.74 Ecuaciones de Colebrook y White

La gran mayoría de flujos de agua en tuberías se encuentran en la zona de transición en los diagramas de Nikuradse y Moody, por lo cual las ecuaciones de Prandtl y von Kárman no son aplicables. Dado lo anterior, en 1939 Colebrook y White realizaron estudios detallados del flujo transicional con el fin de encontrar una expresión que describiera el factor de fricción para este tipo de flujo. Estos estudios culminaron con el desarrollo de ecuaciones para flujos turbulentos hidráulicamente lisos y rugosos como se muestra a continuación:

Flujo turbulento hidráulicamente liso

$$\sqrt{\frac{1}{f}} = 2\log_{10} Re\sqrt{f} - 0.8$$

Ecuación 13 Ecuación de Colebrook-White para FTHL

Flujo turbulento hidráulicamente rugoso

$$\sqrt{\frac{1}{f}} = 2\log_{10}\left(\frac{d}{k_s}\right) + 1.14$$

Ecuación 14 Ecuación de Colebrook-White para FTHR

Sin embargo, las dos ecuaciones anteriores son casos extremos del flujo turbulento; estas expresiones mostraban dentro del logaritmo los términos importantes para cada caso y dejaban de lado los demás términos irrelevantes. Por lo anterior, Colebrook y White establecieron que el comportamiento de las tuberías reales debería estar expresado incluyendo los dos extremos anteriormente mencionados. Por lo tanto, se dio lugar al desarrollo de la siguiente ecuación general, válida para todo el rango turbulento. Es pertinente aclarar que esta ecuación tiene el inconveniente de no ser explícita para el factor de fricción, lo cual implica la necesidad de utilizar métodos numéricos para su solución.

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{k_s}{3.7d} + \frac{2.51}{Re\sqrt{f}}\right)$$

Ecuación 15 Ecuación de Colebrook-White para FTT

3.10 Pérdidas Menores

Además de las pérdidas por fricción generadas por la interacción del fluido con las paredes de la tubería, es posible que se den pérdidas de energía producidas por los codos, uniones, válvulas, llaves o cualquier obstrucción que le impida al agua circular en línea recta; estas pérdidas de energía se les llama pérdidas menores. Se le llaman de esta manera ya que en general son mucho menores que las pérdidas por fricción en tramos de tubería con una longitud considerable, a continuación se presenta la expresión que permite calcular estas pérdidas de energía:

IAMB 2013-20

 $\sum h_m = \left(\sum k_m\right) \frac{v^2}{2g}$

Ecuación 16 Pérdidas menores

dónde:

- *h*_m: Pérdidas menores.
- k_m : Coeficiente de pérdidas menores, el cual depende del tipo de accesorio.
- *v*: Velocidad media del flujo.
- g: Aceleración de la gravedad.

4. Modelo Físico

Desde el año 2011, la Universidad de los Andes y PAVCO han colaborado con el diseño, construcción y puesta en marcha de un modelo físico que simula las condiciones de un sistema de distribución de agua potable. Debido al gran espacio requerido por el modelo, la construcción de este se llevó a cabo en las instalaciones de PAVCO en la zona de almacenamiento de productos, la cual se encuentra ubicada en los linderos de la fábrica.

4.1 Descripción del Modelo

El modelo consta de una tubería de PVC de 6 pulgadas de diámetro, con una longitud de 76.79 metros. Desde el año 2011 hasta mitad del año 2013 la tubería principal no tenía uniones; sin embargo hacia mitad del 2013 esta se reemplazó por una tubería de la misma longitud pero que incluye 13 uniones. El espaciamiento entre uniones es aproximadamente de 5.85 metros, a excepción de un tramo de la tubería (entre dos uniones) de 0.42 metros. Adicionalmente, el modelo está constituido por dos tanques, uno de almacenamiento y un tanque vertical elevado, los cuales se encuentran conectados entre sí.

Figura 10 Unión tubería principal

En la Figura 11 se puede observar que el montaje consta de 3 tuberías, la tubería principal (diámetro 0,16086 m) que es aquella con la cual se realizan las pruebas, una tubería que transporta el agua desde el tanque de almacenamiento hasta el tanque elevado (diámetro 0,2032 m) y finalmente, una tubería de rebose (diámetro 0,16086 m).

El tanque elevado es el encargado de suministrar la altura piezométrica suficiente para alcanzar las velocidades requeridas en el desarrollo de las pruebas, mientras que el tanque de almacenamiento recibe la descarga del agua proveniente de la tubería principal para ser recirculada por medio de una motobomba. En el tanque de almacenamiento la tubería principal se conecta con un vertedero rectangular, por medio del cual es posible medir el caudal que fluye a través de esta.

IAMB 2013-20

PLANO EN PLANTA MONTAJE

Figura 11 Plano en Planta del Montaje

IAMB 2013-20

CORTE A – A

Figura 12 Corte longitudinal tanque de almacenamiento

VERTEDERO RECTANGULAR

Figura 14 Vertedero Rectangular

Figura 13 Corte longitudinal vertedero rectangular

CORTE C – C

4.2 Instrumentación del Modelo

El montaje cuenta con un vertedero rectangular (Figura 16), una motobomba (Figura 17), un tanque de almacenamiento (Figura 18), junto al montaje se encuentra el tablero manométrico (Figura 19), adicionalmente cuenta con un tanque elevado (Figura 20), un sensor de presión diferencial (Figura 21), un caudalímetro (Figura 22), una válvula reguladora del caudal (Figura 23), y finalmente se dispone de un software el cual registra los datos obtenidos del sensor (Figura 25). El sensor de presión y los manómetros se encuentran conectados a los dos extremos de la tubería, dejando de lado los primeros 3.24 metros y los últimos 2.314 metros, por lo cual la distancia en la cual se mide la caída de presión es de 71.236 metros.

Figura 16 Vertedero rectangular

Figura 17 Motobomba

Figura 18 Tanque de almacenamiento

Figura 19 Tablero manométrico

Figura 20 Tanque elevado

Figura 21 Sensor de presión diferencial

Figura 22 Caudalímetro

Figura 23 Válvula reguladora de caudal

Figura 24 Mangueras de manómetros y sensor de presión diferencial

Figura 25 Software del montaje

4.3 Cálculo caudal del Vertedero

El uso de un vertedero se constituye en uno de los métodos más utilizados para realizar aforo de caudales, por ello para calcular el caudal que fluye a través de la tubería, se obtuvo la curva de calibración del vertedero rectangular instalado en el montaje. Esta curva fue realizada por Laura Nieto en su tesis (Nieto, 2011). Por medio de la altura de la lámina de agua y la curva de calibración que se muestra a continuación es posible encontrar el caudal que fluye en la tubería. Sin embargo, el caudal hallado con el vertedero no fue tomado en cuenta en los cálculos del factor de fricción, debido a la poca confiabilidad e imprecisión de los datos tomados con el limnímetro.

Figura 26 Curva de calibración del vertedero (Nieto, 2011)

 $Q = 1,3306 * (H - Ho)^{0,7054}$

Ecuación 17 Curva de calibración del vertedero

dónde:

Q: Caudal (m³/s)

H: Altura lámina de agua (m)

Ho: Altura limnímetro para la cual el caudal es cero (m)

4.4 Cálculo de la Viscosidad Cinemática

La temperatura del agua es un factor de gran influencia en la determinación de la rugosidad absoluta de la tubería, ya que los cambios de temperatura afectan la viscosidad cinemática del fluido. Esta propiedad representa la relación entre la viscosidad dinámica y la densidad, las cuales afectan el cálculo del número de Reynolds. Aunque en la literatura se encuentran diversas tablas con valores de viscosidad cinemática para diferentes temperaturas, para obtener una mayor precisión en este valor se realizó una regresión polinomial con los valores encontrados en dichas tablas. A continuación se presenta la curva de viscosidad cinemática realizada por Laura Nieto en su tesis:

Figura 27 Curva determinación de la viscosidad cinemática (Nieto, 2011)

 $\nu = (4,7E - 14)(T^{\underline{o}})^4 - (1,09E - 11)(T^{\underline{o}})^3 + (1,04E - 9)(T^{\underline{o}})^2 - (5,48E - 14)(T^{\underline{o}}) + 1,77E - 6$

Ecuación 18 Curva viscosidad cinemática

dónde:

v: Viscosidad cinemática (m²/s)

Tº: Temperatura (ºC)

4.5 Nivelación del Terreno

El terreno sobre el cual reposa la tubería a pesar de que fue nivelado se ha asentado en ciertos puntos debido a las lluvias y crecimiento de vegetación debajo de la tubería; adicionalmente ya que la tubería sin uniones fue reemplazada por la que se encuentra actualmente, se presenta un desnivel diferente al reportado en tesis anteriores. Por lo anterior, se realizó una nueva nivelación del terreno.

La nivelación fue llevada a cabo con el uso de un nivel de precisión y una mira. Estos instrumentos son utilizados para medir la diferencia de nivel entre dos puntos, usando la metodología de altimetría; fue posible encontrar la diferencia de nivel entre los dos puntos en los cuales se encuentran conectadas las mangueras de los manómetros y sensor diferencial, por medio del uso de puntos intermedios.

A continuación se presenta el levantamiento topográfico y el perfil de la tubería hallado durante la nivelación efectuada como parte de este estudio, en la cual se encontró una diferencia de nivel de -5,45 cm. Es importante aclarar, que el nivel utilizado tiene una precisión de ± 2 mm.

PUNTO		Vistas atrás	Vista adelante	Diferencia	Cota
Aguas Abajo	V. Superior	0,978			0,15
	V. intermedia	0,958			
	V. Inferior	0,944			
1.	V. Superior	0,985	1,03		
	V. intermedia	0,955	1,075	-0,117	0,033
	V. Inferior	0,9265	0,9745		
2	V. Superior	1,062	1		
	V. intermedia	0,986	0,9665	-0,0115	0,0215
	V. Inferior	0,957	0,934		
3	V. Superior	1,032	1,004		
	V. intermedia	1,003	0,9705	0,0155	0,037
	V. Inferior	0,974	0,947		
4	V. Superior	0,9985	0,96		
	V. intermedia	0,9695	0,9315	0,0715	0,1085
	V. Inferior	0,9405	0,9035		
5	V. Superior	0,9825	1,047		
	V. intermedia	0,954	1,0265	-0,057	0,0515

Tabla 1 Levantamiento topográfico del terreno

	V. Inferior	0,9255	0,986		
Aguas Arriba	V. Superior		0,9505		
	V. intermedia		0,91	0,044	0,0955
	V. Inferior		0,904		

Figura 28 Perfil de la tubería

Figura 29 Terreno sobre el cual reposa la tubería

A pesar de efectuarse la nivelación del terreno, después de analizar las ecuaciones para determinar las pérdidas de energía, se encontró que la diferencia de altura entre los dos puntos no afecta las mediciones. A continuación se presenta el análisis realizado:

Figura 30 Manómetro en tubería inclinada

$$P_a = \rho_{H20}g(Hm + y + (Z_1 - Z_2)) + P_1$$
$$P_b = \rho_{Hg}gHm + \rho_{H20}gy + P_2$$
$$P_a = P_b$$

 $\rho_{H20}g(Hm + y + \Delta Z) + P_1 = \rho_{Hg}gHm + \rho_{H20}gy + P_2$

$$P_1 - P_2 = \Delta P$$

$$\begin{split} \Delta P &= \rho_{Hg}gHm + \frac{\rho_{H2O}gy}{\rho_{H2O}gy} - \rho_{H2O}gHm - \frac{\rho_{H2O}gy}{\rho_{H2O}gy} - \rho_{H2O}g(Z_1 - Z_2) \\ \Delta P &= \rho_{Hg}gHm - \rho_{H2O}gHm - \rho_{H2O}g(Z_1 - Z_2) \end{split}$$

De la ecuación de Bernoulli se tiene lo siguiente

$$\frac{P_1}{\rho_{H20}g} + \frac{V_1^2}{2g} + Z_1 = \frac{P_2}{\rho_{H20}g} + \frac{V_2^2}{2g} + Z_2 + Hf$$

De la ecuación de continuidad

$$Q = V * A$$
$$Q_1 = Q_2$$
$$V_1 * A_1 = V_2 * A_2$$

Pero la sección transversal de la tubería no cambia; por tanto

$$A_1 = A_2$$
$$V_1 = V_2$$
$$\frac{V_1^2}{2g} = \frac{V_2^2}{2g}$$

La ecuación de Bernoulli quedaría de la siguiente forma

$$\frac{P_1}{\rho_{H20}g} + Z_1 = \frac{P_2}{\rho_{H20}g} + Z_2 + Hf$$
$$\left(\frac{P_1}{\rho_{H20}g} - \frac{P_2}{\rho_{H20}g}\right) + (Z_1 - Z_2) = Hf$$
$$\left(\frac{\Delta P}{\rho_{H20}g}\right) + (Z_1 - Z_2) = Hf$$

Reemplazando ΔP hallado anteriormente se tiene lo siguiente

$$\begin{pmatrix} \left(\rho_{Hg}gHm - \rho_{H20}gHm - \rho_{H20}g(Z_1 - Z_2) \right) \\ \rho_{H20}g \end{pmatrix} + (Z_1 - Z_2) = Hf \\ \left(\frac{Hm(\rho_{Hg}g - \rho_{H20}g)}{\rho_{H20}g} - \frac{\rho_{H20}g(Z_1 - Z_2)}{\rho_{H20}g} \right) + (Z_1 - Z_2) = Hf \\ \frac{Hm(\rho_{Hg} - \rho_{H20})}{\rho_{H20}} - (Z_1 - Z_2) + (Z_1 - Z_2) = Hf \\ \frac{Hm(\rho_{Hg} - \rho_{H20})}{\rho_{H20}} = Hf$$

Ecuación 19 Cálculo pérdidas de energía

4.6 Mantenimiento del Cloro Residual Libre en el Sistema

Lo ideal es simular un sistema de distribución de agua potable, por lo cual fue necesario cumplir con la normativa establecida para una concentración mínima de cloro residual en el modelo. Según la Resolución 2115 de 2007, la concentración de cloro residual libre aceptable dentro de cualquier punto de la red es de 0,3 a 2 mg/L. De acuerdo con lo anterior, se decidió mantener una concentración de 0,5 mg/L al igual que en las investigaciones previas con este modelo. Para ello fue necesario encontrar el volumen total de agua en el sistema; a continuación se presenta el volumen de agua en cada sección del modelo, presentado en el "Estudio de las ecuaciones que describen el flujo turbulento hidráulicamente liso: revisión del diagrama de Moody y de las ecuaciones de Colebrook-White y de Blasius", Tesis elaborada por Laura Nieto.

Tabla 2 Volumen de agua almacenado en el sistema (Nieto, 2011)					
Volumen en el tanque de alimentación (m³)	8,87				
Volumen en el tanque de almacenamiento (m ³)	24,02				
Volumen almacenado en las tres tuberías (m ³)	4,88				
Volumen total (m³)	37,76				

Luego se procedió a calcular la cantidad de cloro a adicionar, teniendo en cuenta que se va a usar ácido hipocloroso granular.

$$37760 \text{ L} \times 0.5 \frac{\text{mg ClOH}}{\text{L}} = 18880 \text{ mg ClOH} \times \frac{1 \text{ g Cl}}{1000 \text{ mg ClOH}} = 18.88 \text{ g ClOH}$$

Ya que el Cloro es sólido en la forma $(ClO)_2Ca_{(s)}$ al adicionarlo en agua ocurre la siguiente reacción:

 $(ClO)_2Ca_{(s)} + H_2O_{(l)} \longrightarrow 2ClOH + Ca$

Ya que una parte del ácido hipocloroso se gastó en la reacción, es necesario realizar el cálculo estequiométrico para hallar el cloro total a adicionar. Según lo anterior, se tiene que una mol de $(ClO)_2Ca_{(s)}$ reacciona con 2 moles de ClOH.

Pesos moleculares:

 $(ClO)_2Ca_{(s)}=144 \text{ g}$

ClOH = 52 g

$\frac{144 \text{ g} (\text{ClO})_2 \text{Ca}_{(s)}}{2(52 \text{ g}) \text{ ClOH}} \times 1.35 = 1.87 \text{ g} (\text{ClO})_2 \text{Ca}_{(s)}}$

Entonces para el volumen de agua en el sistema, se requiere adicionar:

18.88 g ClOH x 1.87 <u>g (ClO)₂Ca</u>= 35.30 g (ClO)₂Ca g ClOH

4.7 Adición de Alguicida

En el presente estudio, con el fin de evitar la proliferación de algas en el sistema, fue necesario adicionar un alguicida llamado Cristalin, este es alguicida y biocida. Adicionalmente, es compatible con el cloro granular mencionado anteriormente. Para hallar la cantidad de alguicida a adicionar fue necesario seguir las instrucciones del fabricante del producto, las cuales sugieren adicionar 6 ml de alguicida por cada metro cúbico de agua una vez a la semana. Esta adición de alguicida se dividió en dos, de esta forma se adicionaron 3 ml por cada m³ de agua, dos veces a la semana.

Teniendo en cuenta el volumen de agua almacenado en el sistema, la cantidad de alguicida a adicionar cada día se presenta a continuación:

37,76
$$m^3$$
 agua * $\frac{3 \, mL \, alguicida}{m^3 agua} = 113,28 \, mL \, alguicida$

5. Determinación de las Pérdidas por Fricción y Rugosidad Absoluta

Para la determinación del factor de fricción y la rugosidad absoluta se utilizaron los datos manuales (manómetros y vertedero) y los datos de los sensores, a continuación se presenta el diagrama de flujo con los pasos a seguir en las mediciones y cálculos:

Figura 31 Diagrama de flujo cálculo del factor de fricción y rugosidad relativa

A continuación se presenta un cálculo típico del factor de fricción y rugosidad absoluta.

• Cálculo del caudal del vertedero

$$H_0 = 6 \ cm$$

$$H_1 = 19,50 \ cm$$

$$Q_v = \left(\frac{H - H_o}{1,330683072}\right)^{\frac{1}{0,7054593975}} * 1000$$

$$Q_v = \left(\frac{0,195 \ m - 0,06 \ m}{1,330683072}\right)^{\frac{1}{0,7054593975}} * 1000 = 39,026 \frac{L}{s}$$

• Cálculo de las pérdidas menores

$$H_m = K_m \frac{V^2}{2g}$$

$$V = \frac{Q}{\pi \left(\frac{d}{2}\right)^2}$$

$$K_m = 0.01$$

$$d = 0.16086 m$$

$$V = \frac{0,039026\frac{m^3}{s}}{\pi \left(\frac{0,16086}{2}m\right)^2} = \frac{0,039026\frac{m^3}{s}}{0,02\,m^2} = 1,92\frac{m}{s}$$

La tubería tiene 13 uniones, por tanto es posible sumar el coeficiente de pérdidas

menores (K_{m)} para cada una de las uniones

$$\sum K_m = 0,13$$

$$H_m = \sum K_m \frac{V^2}{2g} = 0.13 * \frac{\left(1.92\frac{m}{s}\right)^2}{2 * 9.81\frac{m}{s^2}} = 0.0244 m$$

• Cálculo pérdidas por fricción

$$\begin{split} H_{total} &= \Delta P_{prom} = 10,6\ cm\ Hg \\ 1\ mca &= 7,357212\ cm\ Hg \\ H_{total} &= 10,6\ cm\ Hg\ * \frac{1\ mca}{7,357212\ cm\ Hg} = 1,4408\ mca \\ H_{total} &= H_f + H_m \\ \end{split}$$

• Cálculo número de Reynolds

$$Re = \frac{V * d}{v}$$

$$v = (4,7 * 10^{-4}(T^{\circ})^{4}) - (1,09 * 10^{-11}(T^{\circ})^{3}) + (1,04 * 10^{-9}(T^{\circ})^{2}) - 5,48 * 10^{-8}(T^{\circ})$$

$$v = (4,7 * 10^{-4}(18,8^{\circ}C)^{4}) - (1,09 * 10^{-11}(18,8^{\circ}C)^{3}) + (1,04 * 10^{-9}(18,8^{\circ}C)^{2}) - 5,48$$

$$* 10^{-8}(18,8^{\circ}C)$$

$$\nu = 1,0408 * 10^{-6} \frac{m^2}{s}$$

$$Re = \frac{1,92\frac{m}{s} * 0,16086 m}{1,0408 * 10^{-6}\frac{m^2}{s}} = 296796,46$$

• Cálculo del factor de fricción de Darcy

$$H_f = f \frac{l * V^2}{d * 2g}$$
$$f = H_f \frac{d * 2g}{l * V^2} = 1,4263 \ m * \frac{0,16086 * 2 * 9,81}{71,236 * 1,92^2} = 0,0170$$

• Cálculo rugosidad absoluta

$$\frac{1}{\sqrt{f}} = -2\log\left(\frac{ks}{2,7*d} + \frac{2,51}{Re*\sqrt{f}}\right)$$
$$ks = 3,7*d(0,316228^{\frac{1}{\sqrt{f}}} - \frac{2,51}{Re*\sqrt{f}})$$

,

 $ks = 3.7 * 0.16228 m (0.316228 \sqrt[]{0.017}{-} - \frac{2.51}{105666.775 * \sqrt{0.017}}$

 $ks = 0,048 \, mm$

6. Resultados y Comparación con Tesis Anteriores

6.1 Aspectos Fisicoquímicos

El sistema se alimentó con hipoclorito de calcio granular, con el fin de mantener una concentración de cloro residual mínima entre 0.3 mg/l y 2 mg/L (según la normativa). Cada día de medición se agregaron 35.3 g de hipoclorito de calcio. Para determinar si la concentración de cloro residual efectivamente estaba en 0.5 mg/L, se utilizó un Kit de detección cuya escala es de colores (como se muestra en la Figura 32) y por medio de este Kit es posible medir el pH.

Figura 32 Kit de medición de cloro libre y pH

Los resultados obtenidos en la medición del cloro fueron constantes a lo largo de todas las mediciones, ya que se mantuvo la concentración en 0,5 mg/L (Figura 33). Para el caso del pH, este varió en un rango entre 7.2 y 8.2; sin embargo este se encuentra dentro de un rango neutro como se muestra en la Figura 34.

Figura 33 Concentración de cloro libre a lo largo del tiempo

Figura 34 pH a lo largo del tiempo

6.2 Aspectos Hidráulicos

Durante la investigación se llevaron a cabo pruebas con 302 caudales diferentes; en el caso de los sensores para cada uno de los caudales se tomaron 300 datos. Estos fueron promediados con el fin de ubicarlos en el diagrama de Moody y hallar la rugosidad relativa de la tubería por medio del método gráfico. En los Anexos I y II se presentan los datos correspondientes a las lecturas del sensor de presión diferencial y el caudalímetro de los 300 datos para cada uno de los caudales, así como los cálculos realizados.

6.2.1 Factor de Fricción hallado con los datos de los sensores

Debido a que la tubería utilizada para las mediciones tiene 13 uniones, fue necesario probar diferentes coeficientes de pérdidas menores con el fin de encontrar cual era el más apropiado. Por lo anterior, se realizaron los cálculos del factor de fricción con tres diferentes coeficientes de pérdidas menores (0, 0.01 y 0.03). En la Figura 37 se observa el diagrama de Moody con un coeficiente de pérdidas menores de cero, ya que generalmente para tuberías de PVC se ignoran las pérdidas menores.

Para el caso de los datos de los sensores las pérdidas totales de energía por fricción fueron halladas por medio de la siguiente ecuación, teniendo en cuenta que el sensor arroja el valor de la pérdida de energía total:

$$H_f = H_{total} - H_{menores}$$

Ecuación 20 Cálculo pérdidas por fricción

Finalmente, el factor de fricción fue calculado para cada una de las mediciones por medio de la ecuación de Darcy-Weisbach. Los resultados individuales para cada día de medición se presentan en el Anexo I.

$$f = h_f \ \frac{2gd}{v^2 l}$$

Ecuación 21 Cálculo factor de fricción con ecuación de Darcy-Weisbach

Se observa que los datos hallados en este estudio (para Km=0) coinciden con los datos reportados en la tesis de Lizeth Jiménez, aunque se observan datos ligeramente mayores, mientras que existe una gran diferencia con los datos reportados por Laura Nieto y Sara Gacharná.

Para el caso en el cual se tomó un coeficiente de pérdidas menores de 0.01 se observa que aún existe un buen ajuste. Sin embargo, para el caso del coeficiente de 0,03 se evidencia que los datos

del factor de fricción se desplazan notablemente hacia abajo. Por lo anterior, es posible concluir que el coeficiente de pérdidas menores adecuado para esta tubería es de 0.01.

Adicionalmente, se observa que los datos de Sara Gacharná y Laura Nieto se encuentran bastante por debajo de los datos reportados por Lizeth Jiménez y los hallados en el presente estudio. Por otra parte, existen datos de Lizeth Jiménez correspondientes a los primeros dos días de medición que coinciden con los datos de Sara Gacharná. Por lo anterior, fue necesario investigar las causas de las diferencias existentes entre los datos arrojados, llegando a la conclusión de que probablemente el error que se observa fue producido por la posición de la manguera del sensor de presión diferencial, como se explicará más adelante.

Por otro lado, al detallar los resultados obtenidos en el presente estudio se puede observar que los datos no se ajustan de manera apropiada al Diagrama de Moody. Este desajuste se evidencia en los datos con números de Reynolds bajos, ya que el factor de fricción decrece a menores números de Reynolds, contrario a las diferentes líneas de rugosidad relativa.

Ahora bien, se observa gráficamente que todos los resultados del factor de fricción para coeficientes de pérdidas menores de 0 y 0.01, están cerca de la curva de rugosidad relativa ks/d =0.0001 lo cual corresponde a una rugosidad absoluta de 0.016 mm; esta rugosidad es mucho mayor a la rugosidad absoluta teórica para el PVC (0.0015 mm).

Por otro lado, para el caso de un coeficiente de pérdidas menores de 0.03 se observa que los datos se encuentran cerca a la curva de rugosidad relativa ks/d= 0.00005 la cual corresponde a una rugosidad absoluta de 0.008 mm (ks=0,16086*0,00005), valor que también dista mucho del valor teórico para el PVC.

6.2.2 Error Inducido por la Posición de la Manguera del Sensor de Presión Diferencial

Después de analizar los datos de las tesis anteriores, se encontraron resultados que difieren de los hallados por Lizeth Jiménez y la presente investigación, por lo cual después de realizar una revisión, se encontró que la posible fuente de error fue la posición de la manguera del sensor de presión diferencial en la tubería.

En un inicio, las mangueras de aguas arriba y aguas abajo del sensor se encontraban ubicadas en la parte superior de la tubería, como se muestra en la Figura 35, sin embargo fue necesario cambiar su ubicación debido a la generación de burbujas en la parte superior de la tubería, las cuales alteraban la medición. Se tuvo que cambiar a una posición de aproximadamente 45º (en la parte lateral de la tubería) como se encuentra actualmente (Figura 36) y este cambio se dio justamente cuando Lizeth Jiménez recibió el montaje. Por lo anterior, es posible concluir que existe una gran posibilidad de que la posición del sensor en la parte superior de la tubería, haya

alterado los datos medidos por Sara Gacharná y las dos primeras semanas de medición de Lizeth Jiménez.

Figura 35 Posición de la manguera del sensor de presión diferencial (Gacharná, 2011)

Figura 36 Posición actual de la manguera del sensor diferencial

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC

Figura 37 Diagrama de Moody datos sensores Km=0 (Comparación Tesis anteriores)

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC

Figura 38 Diagrama de Moody Datos sensores Km=0.01 (Comparación Tesis Anteriores)

Figura 39 Diagrama de Moody Datos sensores Km=0.03 (Comparación Tesis Anteriores)

6.2.3 Factor de Fricción hallado con los datos manuales (Vertedero y manómetros)

Para el caso de los datos manuales, las pérdidas totales de energía fueron halladas teniendo en cuenta que el desnivel de la tubería no afecta el cálculo de las pérdidas como se demostró en el Numeral 4.2, por medio de la siguiente ecuación:

 $\frac{Hm(\rho_{Hg} - \rho_{H2O})}{\rho_{H2O}} = Htotal$ Ecuación 22 Pérdidas de energía totales

Una vez calculado el H total es posible calcular las pérdidas por fricción restándole a este valor las pérdidas menores. Finalmente, el factor de fricción fue calculado por medio de la ecuación de Darcy-Weisbach. En la Figura 40 se observa que para los tres coeficientes de pérdidas menores tomados, los valores del factor de fricción son aún mayores que los datos arrojados por los sensores. Estos resultados no son muy confiables debido a errores inducidos por la mala calibración del limnímetro utilizado en las mediciones y la impresión de los manómetros de mercurio, generando errores en la diferencia de presión de hasta un 30% para caudales bajos con respecto a los valores arrojados por los sensores. Por lo anterior, estos datos no fueron tomados en cuenta en el análisis final de la rugosidad absoluta de la tubería.

6.2.4 Diagrama de Moody basado en las diferentes ecuaciones desarrolladas

A lo largo de la historia se han desarrollado distintas ecuaciones que describen el flujo turbulento hidráulicamente liso; sin embargo desde su desarrollo estas inducen un pequeño error que ha ido aumentado debido a la creación de nuevos materiales para las tuberías, los cuales son mucho más lisos que los utilizados en las investigaciones con las cuales se desarrollaron estas ecuaciones (Flechas, 2010).

Un flujo se puede clasificar como turbulento hidráulicamente liso, según Colebrook y White cuando la rugosidad de las paredes internas de la tubería es menor o igual al 30% del espesor de la subcapa laminar viscosa, como se mencionó en el marco teórico. Por lo anterior, con el fin de comprobar si los datos hallados en este estudio se encuentran dentro de la zona de flujo turbulento hidráulicamente liso o en la zona de transición, se graficaron los resultados junto con los límites establecidos por las diferentes ecuaciones en el Diagrama de Moody, como se muestra en la Figura 41, donde se presentan los datos hallados para el factor de fricción, calculado para cada uno de los 3 coeficientes de pérdidas escogidos.

Se observa que la totalidad de los datos para los tres coeficientes de pérdidas menores tomados, se encuentran por debajo del límite para FTHL establecido por Colebrook-White. Por lo tanto, todos los datos se encuentran por fuera de la zona de transición en el Diagrama de Moody.

Adicionalmente, se observa que para números de Reynolds bajos algunos datos se encuentran debajo del límite de FTHL establecido por Prandtl y del límite establecido por Blasius. También se observan dos datos bastante alejados de los demás los cuales corresponden a los caudales más bajos medidos durante el estudio (5.52 L/s y 5.93 L/s).

Figura 40 Diagrama de Moody datos manuales (Vertedero y manómetros)

IAMB 2013-20

Figura 41 Compobación zona de transición

6.2.5 Análisis de la Rugosidad

Con los datos obtenidos de las mediciones de presión y caudal, fue posible encontrar el factor de fricción y la rugosidad absoluta de la tubería de PVC de 6 pulgadas de diámetro. Se graficaron los datos obtenidos para los diferentes coeficientes de pérdidas menores comparados únicamente con los datos de Lizeth Jiménez (excluyendo las 2 primeras semanas de medición), debido a los posibles errores presentados en las mediciones de Laura Nieto y Sara Gacharná mencionados anteriormente. Al observar los resultados obtenidos en la gráfica de rugosidad vs. Reynolds (Figura 42), se evidencia que la rugosidad aumenta a medida que aumenta el número de Reynolds. Sin embargo, el valor de la rugosidad a partir de números de Reynolds alrededor de 180000 tiende a estabilizarse hacia valores entre 0,015 y 0,025 mm.

Adicionalmente, se evidencia que esta rugosidad es mucho mayor que la rugosidad absoluta teórica del PVC y además se observa que se presentan valores negativos para números de Reynolds bajos. Dado este fenómeno se efectuó un análisis adicional encontrando una variable "a", la cual permite entender mejor el comportamiento de las rugosidades.

En primer lugar, el análisis que se realizó fue el siguiente:

Con los datos de los sensores y la ecuación de Darcy-Weisbach, luego se despejó la rugosidad absoluta de la siguiente ecuación:

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{k_s}{3.7d} + \frac{2.51}{Re\sqrt{f}}\right)$$
$$k_s = 3.7d\left[10^{-1/(2\sqrt{f})} - \frac{2.51}{Re\sqrt{f}}\right]$$

Ecuación 23 Rugosidad absoluta a partir de la ecuación de Colebrook-White

Luego se realizó el procedimiento para encontrar la variable "*a*" de la siguiente forma:

$$\frac{1}{\sqrt{f}} = -2.035 \log_{10} \left(\frac{2.51}{Re\sqrt{f}}\right)$$
$$\frac{1}{\sqrt{f}} = -2.035 \log_{10} \left(\frac{a}{Re\sqrt{f}}\right)$$
$$a = Re\sqrt{f} 10^{-1/(2.035\sqrt{f})}$$

Una vez obtenidos los valores de la variable " *a* " se procedió a realizar una gráfica de " *a* " vs. el número de Reynolds. En la Figura 43 es posible observar que si bien, anteriormente se había observado un buen ajuste de los datos para los cálculos con un coeficiente de pérdidas menores de 0.01 estos datos se encuentran algo por debajo de los datos hallados por Lizeth Jiménez. Considerando lo anterior, se podría concluir que las uniones de la tubería no son significativas en términos de pérdidas de energía se refiere, por lo cual es posible despreciar las pérdidas menores para la tubería estudiada en esta investigación.

Se observa que tanto para los datos de Lizeth Jiménez como para los datos hallados en este estudio (coeficiente de pérdidas menores de cero), el factor "*a*" aumenta conforme aumenta el número de Reynolds en un rango desde cero hasta 5, sin embargo llega un punto en el cual este empieza a estabilizarse y volverse constante.

Los resultados obtenidos para el factor " *a* " en el caso de coeficientes de pérdidas menores de 0.01 y 0,03 no sobre pasan el valor de 5.21, número establecido por Colebrook-White como límite del flujo turbulento hidráulicamente liso. Lo anterior, es coherente con los resultados obtenidos en los análisis anteriores de comprobación de ajuste en la zona de transición. Por lo cual, se concluye que los resultados obtenidos para Km=0.01 y Km=0.03 nunca sobrepasan el límite de FTHL establecido por Colebrook-White. Sin embargo, para el caso de km=0 se observa que algunos datos, correspondientes a caudales muy altos si sobrepasan este límite. Es necesario aclarar, que estos caudales y por lo tanto velocidades tan altas para las cuales se presenta flujo transicional, se encuentran alejadas de los límites máximos para redes de distribución de agua potable.

Ahora bien, a partir del factor " a " fue posible realizar otro análisis con el fin de hallar una nueva rugosidad absoluta de la tubería. Este cálculo se realizó por medio de la siguiente ecuación:

$$k_{s}' = 3.7d \left[10^{-1/(2.035\sqrt{f})} - \frac{a}{Re\sqrt{f}} \right]$$

Ecuación 25 Ks' con el factor "a"

Una vez obtenida la nueva rugosidad se procedió a graficar K_s' vs. K_s (obtenida tradicionalmente), junto con una línea de ángulo 45° . Se observó que las nuevas rugosidades obtenidas son cero o muy cercanas a cero. De esta forma se evidencia que la rugosidad de la tubería de PVC no se percibe, por lo cual el método utilizado para realizar el análisis hidráulico con las ecuaciones tradicionales sobreestima las pérdidas por fricción. Los cálculos realizados para cada uno de los caudales medidos se presentan en el Anexo I.

Figura 42 Comparación Rugosidad absoluta

IAMB 2013-20

Figura 43 Comparación Factor "a"

6.2.6 Análisis del Factor "a"

En la Figura 43 se observa que el factor "a" no es constante para todos los números de Reynolds, sino que aumenta a medida que crece este último. Por lo anterior, se ajustaron todos los datos a una regresión logarítmica como se muestra en la Figura 44 y se encontró un buen ajuste, con un R² de 0,74247. Sin embargo, se observa que los datos aumentan hasta cierto punto y luego tienen una tendencia constante. Por lo tanto, se realizó un análisis con fin de determinar el punto de inflexión para el cual el factor "a" empieza a ser constante y el rango para el cual es posible ajustarlo a una función.

El análisis realizado se basó en el cálculo de la media móvil para todos los datos, teniendo en cuenta que es posible despreciar las pérdidas menores, como se explicó anteriormente. La media móvil fue hallada por medio de la siguiente ecuación.

 $a_{mi} = \frac{a_{i-1} + a_i + a_{i+1}}{3}$

Ecuación 26 Media móvil

Para determinar el punto de inflexión, se calculó el error porcentual entre cada dato de la media móvil y el valor con mayor número de Reynolds, considerando que este último debe tener una tendencia constante. Es pertinente aclarar que se efectuó este procedimiento dado que al calcular el error porcentual entre valores con una tendencia constante, deberían presentarse bajos errores (considerando que al ser de una tendencia constante los valores deben ser similares); por otra parte, el error porcentual que se manifestará entre valores de diferente tendencia (números de Reynolds bajos) debe ser alto. Tras expuesto lo anterior, se toma como punto de inflexión el dato a partir del cual se presente un 10% en su error porcentual.

De acuerdo con lo anterior, se estableció que a partir de un número de Reynolds mayor a 210000 el factor "a" tiende a ser constante con un promedio de 4.89. Mientras que para valores de número de Reynolds menores a 210000 el factor "a" puede ajustarse a una función logarítmica, como se muestra en la Figura 45.

Al realizar la regresión logarítmica se encontró un buen ajuste de esta con los datos experimentales, esto se evidencia en un R² de 0,79. Esta última función logarítmica corresponde a la siguiente expresión:

$a = 2.1294 \ln(Re) - 21,158$

Ecuación 27 Función logarítmica factor "a" Reynolds menores a 210000

Adicionalmente, con el fin de disminuir la dispersión de los datos se graficó la media móvil de cada uno de ellos y se ajustó nuevamente la función logarítmica, esta nueva función presenta un mejor ajuste llegando a un R^2 de 0.9 con se muestra en la Figura 46. Esta nueva función logarítmica corresponde a la siguiente expresión:

 $a = 2.1173 \ln(Re) - 21,011$

Ecuación 28 Función logarítmica factor "a" (media móvil) para Reynolds menores a 210000

Figura 44 Análisis factor "a" (Ajuste para todos los datos)

IAMB 2013-20

Figura 45 Análisis factor "a" (Curva logarítmica Números de Reynolds bajos)

Figura 46 Análisis factor "a" (Media Móvil)

7. Conclusiones y Recomendaciones

En correspondencia con los objetivos planteados en el presente estudio a continuación se presentan las conclusiones y recomendaciones a destacar:

7.1 Modelo Físico

El modelo físico es apropiado para la investigación; sin embargo es necesario tener en cuenta las siguientes recomendaciones para posteriores estudios:

- Es necesario purgar adecuadamente las mangueras de los manómetros de mercurio; debido a la gran longitud de estas el proceso puede ser bastante largo; sin embargo es importante evitar la presencia de burbujas de aire con el fin de evitar errores de medición.
- Para caudales bajos el flujo es bastante inestable y la lectura de los manómetros puede ser muy imprecisa, por lo cual se recomienda utilizar manómetros inclinados con el fin de ampliar la lectura de la diferencia de presión y disminuir el error de medición.
- Es muy importante tener en cuenta la posición de las mangueras tanto del sensor de presión diferencial como de los manómetros en la tubería, ya que como se explicó en el Numeral 6.2.2, la posición de estas puede incurrir en importantes errores de medición.

7.2 Resultados Experimentales

Como se mencionó en el Numeral 6.2.1 se observa que a caudales grandes y por consecuencia números de Reynolds mayores el factor de fricción se comporta de manera congruente con el Diagrama de Moody, mientras que para números de Reynolds bajos el factor de fricción no sigue las curvas de rugosidad relativa, sino que por el contrario va disminuyendo conforme disminuye el número de Reynolds. Es posible apreciar con los cálculos para los tres diferentes coeficientes de pérdidas menores, que las pérdidas de energía por las 13 uniones de la tubería pueden ser despreciables y que los resultados para km =0 son congruentes con los datos reportados en la tesis de Lizeth Jiménez.

A partir del factor de fricción es posible encontrar la rugosidad absoluta de la tubería, la cual presenta valores considerablemente mayores al valor teórico para PVC, e incluso se observan valores negativos. Adicionalmente, se observa que la rugosidad aumenta a medida que crece el número de Reynolds y tiende a volverse constante para altos valores de este.

Con el fin de comprobar que el flujo no se encontrara en la zona de transición, se ubicaron los datos en el Diagrama de Moody junto con los límites planteados por diferentes autores para FTHL. Se encontró que todos los datos estaban bajo el límite teórico para FTHL establecido por Colebrook-White, mientras que algunos datos correspondientes a números de Reynolds bajos estaban debajo del límite para FTHL establecido por Prandtl. Teniendo en cuenta lo anterior, se concluyó que todos los datos se ubicaban por fuera de la zona de transición.

Así mismo se observó, una relación entre las rugosidades negativas y la ubicación de estos puntos en el diagrama de Moody, ya que estas correspondían a los datos bajo el límite de FTHL establecido por Prandtl. Además, cuando se realizó el análisis con el factor "a" y se recalculó la rugosidad absoluta, esta tomó valores de cero o muy cercanos a este. Por otra parte, es posible observar que el factor "a" presenta un comportamiento logarítmico hasta números de Reynolds de 210000, mientras que de este punto en adelante tiende a volverse constante con un valor promedio de 4.89.

Por lo anterior, es evidente que es necesario reevaluar el límite de FTHL y la ecuación de Colebrook-White, ya que al re calcular la rugosidad con el factor "a" esta no se percibe, lo cual es evidente al tomar valores de cero o muy cercanos a cero. Este fenómeno se puede relacionar con el hecho de que los materiales de los cuales están hechas las tuberías hoy en día como el PVC, llegan a ser tan lisos que el análisis convencional de la hidráulica no se ajusta bien a las nuevas condiciones y características de las tuberías.

Se sugieren realizar estudios experimentales posteriores con una tubería de diferente diámetro y sin uniones, con el fin de corroborar los resultados hallados hasta el momento, en la presente investigación y estudios anteriores.

Finalmente, se sugiere plantear modificaciones a las ecuaciones usadas para el cálculo del factor de fricción, las cuales permitan realizar un análisis más apropiado de la rugosidad para los nuevos materiales de los cuales están fabricadas las tuberías en la actualidad.

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA *Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC*

8. Bibliografía

Nieto, L. (2011). *Estudio de las ecuaciones que describen el flujo turbulento hidráulicamente liso: revisión del Diagrama de Moody y las ecuaciones de Colebrook-White y Blasius.* Bogotá: Universidad de Los Andes, Tesis.

Gacharná, S. C. (2011). *Factores que favorecen la generación y crecimiento de algas en las redes de distribución de agua potable.* Bogotá: Universidad de Los Andes, Tesis.

Schlichting, H. (1979). Boundary-Layer Theory. McGraw Hill.

White, F. (s.f). Fluid Mechanics (Fourth Edition ed.). (McGraw-Hill, Ed.)

Mott, R. (2006). Mecánica de fluidos (Sexta edición ed.). México: Pearson Education.

Flechas, R. (2010). Efecto del uso de la ecuación de Darcy-Weisbach vs la ecuación de Hazen-Williams sobre los costos de diseños optimizados en acueductos, teniendo en cuenta la rugosidad de las tuberías, línea del gradiente hidráulico y temperatura. Bogotá: Universidad de Los Andes, Tesis.

Jiménez, L. (2012). *Estudio sobre crecimiento de algas y cianobacterias y su efecto hidráulico en una tuber{ia de PVC de 6 pulgadas.* Bogotá D.C: Universidad de los Andes.

Universidad de Sevilla. (2007). *Experiencias de Nikuradse. Valor del coeficiente de fricción según el régimen de funcionamiento.* Obtenido de http://ocwus.us.es/ingenieria-agroforestal/hidraulica-y-riegos/temario/Tema%202.Conducciones%20forzadas/tutorial_09.htm

Orozco, S. (s.f). *Fundamentos de flujo en tuberías*. Recuperado el Diciembre de 2013, de http://fluidos.eia.edu.co/hidraulica/articuloses/flujoentuberias/confinado/confinado.htm

Saldarriaga, J. G. (2007). *Hidráulica de Tuberías: Abastecimiento de Agua, Redes y Riegos.* Bogotá D.C.: Alfaomega.

ANEXO I – RESULTADOS CÁLCULO DE Re, f, Ks, a, Ks'

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC

Universidad de los Andes

CÁLCULOS PARA COEFICIENTE DE PÉRDIDAS MENORES IGUAL A CERO (Km=0)

				5-Septiembre	e de 201	.3 (K _m =0)				
			Promedios		Μ	ínimos	Μ	áximos		
Caudal (L/s)	ks(mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re(-)	a prom (-)	Ks' (mm)
				(mca)						
10,80	0,017	0,019	80874,78	0,123	0,018	79166,24	0,021	80566,87	3,28	1,072E-16
12,68	0,045	0,020	95124,35	0,172	0,019	93969,39	0,020	95435,11	4,06	0,000E+00
14,08	0,050	0,019	105759,83	0,210	0,018	103277,89	0,021	105400,97	4,32	0,000E+00
15,52	0,049	0,019	116578,04	0,251	0,018	115141,55	0,020	116249,22	4,44	2,358E-15
17,09	0,047	0,019	128670,57	0,298	0,017	127149,60	0,020	128213,84	4,50	0,000E+00
18,10	0,050	0,019	136306,85	0,334	0,018	134289,94	0,019	137385,38	4,71	0,000E+00
20,26	0,048	0,018	152945,80	0,411	0,018	151062,39	0,019	152251,92	4,86	0,000E+00
21,39	0,045	0,018	161649,15	0,452	0,017	157779,15	0,019	161010,73	4,81	5,360E-16
23,90	0,043	0,018	180632,47	0,553	0,017	178581,36	0,018	180222,96	4,91	0,000E+00
23,88	0,044	0,018	180732,01	0,554	0,017	178805,37	0,018	180120,07	4,96	2,144E-16
25,25	0,042	0,018	191048,79	0,613	0,017	188903,47	0,018	191560,42	5,01	2,144E-16
27,32	0,044	0,017	206754,08	0,713	0,017	201762,71	0,019	205242,63	5,24	5,360E-17
19,07	0,048	0,018	144318,94	0,367	0,017	143035,49	0,019	145345,38	4,74	1,179E-15
30,34	0,038	0,017	229618,78	0,856	0,016	227792,16	0,017	229362,71	5,13	6,967E-16
31,47	0,037	0,017	239907,34	0,915	0,017	238262,16	0,017	239492,18	5,19	0,000E+00
32,75	0,037	0,017	250335,92	0,985	0,016	248864,45	0,017	250006,17	5,26	0,000E+00
34,21	0,037	0,017	261440,18	1,070	0,016	259962,14	0,017	262223,03	5,37	1,072E-16
35,43	0,037	0,017	271432,95	1,142	0,016	269930,33	0,017	272155,15	5,44	1,608E-16
36,52	0,035	0,017	279822,17	1,205	0,016	276593,36	0,017	279382,96	5,42	2,144E-16
37,72	0,034	0,016	289034,13	1,275	0,016	286873,13	0,017	289623,39	5,39	3,462E-16

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				12-Septiembre	e de 201	3 (K _m =0)				
			Promedios		Μ	ínimos	M	áximos		
Caudal (L/s)	ks(mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom (-)	ks'(mm)
				(mca)						
38,15	0,034	0,016	290166,49	1,293	0,013	230900,47	0,016	330215,00	5,40	0,00000
38,92	0,029	0,016	297481,43	1,316	0,008	236992,97	0,016	334238,73	5,05	9,14E-16
39,22	0,027	0,016	299768,04	1,344	0,016	298142,30	0,016	305300,92	4,93	
39,66	0,028	0,016	303905,01	1,378	0,016	302575,60	0,016	305239,97	5,05	3,22E-16
40,89	0,027	0,016	313329,72	1,455	0,016	310583,48	0,016	313849,64	5,04	
41,42	0,027	0,016	317390,31	1,489	0,016	313023,44	0,016	318104,62	5,04	6,70E-16
41,84	0,028	0,016	322184,52	1,521	0,016	320298,99	0,016	324414,15	5,14	6,43E-16
42,19	0,027	0,016	324496,76	1,541	0,016	323154,78	0,016	324619,14	5,10	1,07E-16
42,51	0,027	0,016	327372,50	1,566	0,016	325709,64	0,016	327434,24	5,16	3,48E-16
42,52	0,027	0,016	327451,01	1,566	0,016	326067,94	0,016	327691,46	5,14	7,50E-16
43,09	0,027	0,016	331807,86	1,604	0,016	329872,59	0,016	332928,76	5,15	4,52E-16
43,79	0,027	0,016	337208,52	1,652	0,016	335670,36	0,016	335810,86	5,16	
44,25	0,027	0,016	340728,99	1,686	0,016	339078,46	0,016	341043,22	5,21	
44,54	0,027	0,016	344698,33	1,705	0,016	343292,17	0,016	344729,47	5,21	
45,10	0,026	0,016	348545,77	1,741	0,015	344722,28	0,016	351859,58	5,17	
45,49	0,026	0,016	352001,69	1,771	0,015	350768,47	0,016	351160,43	5,22	5,09E-16
45.95	0.027	0.016	355621.77	1.807	0.015	353890.03	0.016	356196.98	5.26	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				17-Septiembre	e de 202	13 (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	ks(mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	F (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
49,145	0,022	0,015	361690,505	2,029	0,015	360282,324	0,016	361065,508	4,879	0,00000
47,970	0,023	0,015	353944,015	1,945	0,015	350368,846	0,016	355801,721	4,922	2,15E-16
47,034	0,023	0,016	346984,403	1,876	0,015	331651,896	0,016	331651,896	4,920	1,34E-16
44,818	0,023	0,016	331529,085	1,710	0,015	329702,036	0,016	331681,536	4,785	
42,495	0,024	0,016	315140,223	1,554	0,015	313651,941	0,016	315265,534	4,802	
39,951	0,024	0,016	296272,558	1,386	0,016	294846,830	0,016	296073,116	4,715	2,69E-16
35,629	0,026	0,016	264225,315	1,126	0,016	262594,029	0,017	264076,032	4,670	3,23E-16
33,248	0,028	0,016	246566,953	0,993	0,016	245080,643	0,017	247116,389	4,659	
31,023	0,028	0,017	230065,238	0,874	0,016	228370,846	0,017	228789,531	4,582	
26,601	0,032	0,017	197274,093	0,661	0,017	195944,027	0,018	197529,436	4,513	
24,386	0,034	0,017	180848,402	0,566	0,016	179270,712	0,019	182794,009	4,507	1,07E-16
21,868	0,035	0,018	162993,677	0,462	0,017	161196,655	0,018	162953,388	4,392	5,92E-16
19,571	0,039	0,018	145874,504	0,379	0,018	144083,320	0,019	145189,527	4,382	1,13E-15
16,855	0,041	0,019	125629,960	0,288	0,018	111635,722	0,019	111635,722	4,259	2,30E-16
14,963	0,040	0,019	111525,456	0,231	0,018	90909,256	0,020	90909,256	4,078	
12,609	0,034	0,019	93984,064	0,167	0,018	88912,799	0,021	92445,622	3,756	
10,404	0,047	0,020	77745,300	0,119	0,017	73072,563	0,023	79844,445	3,884	
7,914	-0,004	0,020	59140,380	0,068	0,014	54763,590	0,025	57278,598	2,849	
13,933	0,041	0,019	103849,845	0,203	0,018	100801,568	0,021	102684,781	4,028	
17,768	0,040	0,018	132435,673	0,318	0,018	130484,676	0,019	132907,887	4,324	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				19-Septiembr	e de 20	13 (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom(-)	ks'(mm)
				(mca)						
15,927	0,037	0,019	117517,578	0,259	0,018	114099,341	0,020	118338,068	4,067	0,00000
18,292	0,038	0,018	135306,788	0,335	0,018	132478,472	0,019	136048,906	4,269	
20,412	0,041	0,018	151442,859	0,412	0,017	147745,745	0,019	172758,169	4,524	
23,437	0,032	0,017	173806,411	0,523	0,015	171434,977	0,018	172748,699	4,354	2,41E-16
25,980	0,032	0,017	193154,280	0,633	0,017	190045,661	0,018	193962,456	4,505	
28,565	0,029	0,017	212911,845	0,750	0,016	209919,477	0,017	212987,805	4,483	1,13E-15
31,355	0,029	0,017	234302,070	0,892	0,016	231594,562	0,017	234103,889	4,641	5,36E-17
33,596	0,027	0,016	252315,050	1,009	0,016	249819,733	0,017	251088,220	4,637	7,50E-16
35,460	0,026	0,016	266315,828	1,113	0,016	263385,909	0,017	265344,531	4,675	
36,907	0,028	0,016	278579,191	1,205	0,016	275619,363	0,017	279462,243	4,867	
38,737	0,027	0,016	292393,670	1,315	0,016	290266,393	0,016	292622,127	4,879	
40,354	0,026	0,016	305364,804	1,416	0,016	303119,011	0,016	304848,291	4,903	
41,826	0,026	0,016	316499,076	1,513	0,016	313820,933	0,016	316723,132	4,941	
43,168	0,025	0,016	327473,950	1,599	0,015	323950,440	0,016	338586,913	4,918	1,07E-16
44,369	0,024	0,016	336588,097	1,682	0,015	333464,473	0,016	348042,729	4,943	1,32E-15
45,521	0,023	0,015	346188,674	1,754	0,015	343033,858	0,016	345638,337	4,854	1,88E-16
46,518	0,022	0,015	353769,537	1,826	0,015	350616,212	0,016	354860,952	4,878	
47,437	0,022	0,015	361660,237	1,889	0,015	358157,396	0,016	361536,787	4,866	
46,642	0,020	0,015	366306,432	1,811	0,015	365204,173	0,015	366295,498	4,725	2,95E-16
47,921	0,019	0,015	377272,721	1,899	0,015	375922,154	0,015	377238,172	4,697	8,03E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				24-Septiembre	e de 201	13 (K _m =0)				
			Promedios		Μ	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
8,320	-0,067	0,018	63275,928	0,068	0,016	61817,264	0,020	63511,770	1,809	0,00000
11,411	-0,001	0,019	86783,104	0,132	0,018	85907,858	0,019	86192,651	2,889	
14,590	0,025	0,018	111867,510	0,214	0,017	110468,857	0,020	136073,127	3,639	
17,619	0,031	0,018	135335,723	0,306	0,017	134249,075	0,019	135732,841	4,024	
20,625	0,032	0,018	158815,060	0,410	0,017	158040,075	0,018	159304,468	4,224	
23,181	0,031	0,017	178500,684	0,509	0,016	177351,943	0,018	178962,568	4,364	1,61E-16
24,593	0,031	0,017	189375,260	0,568	0,017	187991,787	0,018	188990,480	4,428	4,29E-16
27,215	0,030	0,017	209564,954	0,684	0,016	207931,056	0,017	209600,455	4,519	
30,078	0,028	0,017	232186,964	0,819	0,016	231125,271	0,017	250059,136	4,560	
32,547	0,025	0,016	251864,037	0,943	0,016	250133,880	0,017	252141,816	4,538	2,14E-16
34,773	0,026	0,016	269088,127	1,070	0,016	267671,924	0,016	269117,322	4,701	
36,812	0,025	0,016	285576,628	1,186	0,016	284159,753	0,016	286694,153	4,722	4,30E-16
38,568	0,023	0,016	299198,515	1,285	0,016	297606,619	0,016	298350,966	4,651	4,03E-16
40,062	0,023	0,016	311555,327	1,378	0,015	310034,138	0,016	321490,303	4,699	4,29E-16
41,118	0,023	0,016	320554,359	1,446	0,015	318715,851	0,016	329792,528	4,728	
42,267	0,022	0,016	329512,131	1,521	0,015	328312,957	0,016	328871,892	4,753	
43,235	0,022	0,015	337887,016	1,583	0,015	336341,959	0,016	338706,296	4,744	2,68E-17
44,182	0,021	0,015	346138,956	1,645	0,015	344430,163	0,016	345722,330	4,746	
45,042	0,021	0,015	352875,703	1,703	0,015	351067,514	0,016	352977,481	4,742	2,42E-16
45.789	0.020	0.015	359609.542	1.752	0.015	358253.753	0.015	359970.235	4.725	9.63E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				27-Septiembre	e de 201	13 (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
8,492	0,010	0,020	64097,011	0,079	0,014	62360,534	0,026	64133,688	3,086	0,00000
11,618	0,041	0,020	87693,793	0,145	0,018	86398,215	0,021	88103,289	3,858	2,69E-16
14,550	0,050	0,019	109902,488	0,223	0,018	108273,988	0,021	132663,847	4,384	
17,557	0,044	0,019	132858,866	0,312	0,018	131821,370	0,019	132851,390	4,455	
20,158	0,040	0,018	152535,520	0,401	0,017	151521,216	0,019	152553,572	4,497	
22,602	0,038	0,018	171463,912	0,494	0,017	170489,399	0,018	171215,130	4,601	1,07E-16
24,682	0,036	0,017	187708,295	0,579	0,017	186363,804	0,018	187622,052	4,666	
27,256	0,033	0,017	208316,351	0,692	0,016	206716,851	0,018	208307,567	4,694	
29,757	0,031	0,017	227436,662	0,810	0,016	226236,638	0,017	228456,531	4,690	1,02E-15
31,892	0,029	0,017	244359,317	0,917	0,016	243249,456	0,017	244691,619	4,698	9,68E-16
34,171	0,028	0,016	261819,495	1,042	0,016	260641,153	0,017	261655,687	4,782	
36,126	0,029	0,016	278179,215	1,159	0,016	276629,317	0,017	277031,953	4,960	
37,766	0,028	0,016	290806,545	1,255	0,016	289206,196	0,016	290845,001	4,941	
39,362	0,027	0,016	303102,937	1,352	0,016	301471,187	0,016	314559,118	4,943	8,58E-16
40,643	0,026	0,016	313742,707	1,432	0,016	311952,360	0,016	326509,890	4,956	
42,160	0,025	0,016	326254,923	1,530	0,016	324034,138	0,016	325836,393	4,971	
43,646	0,025	0,016	337752,820	1,629	0,015	335984,235	0,016	337041,636	4,982	2,95E-16
45,254	0,023	0,016	351062,093	1,736	0,015	349549,777	0,016	350481,763	4,960	
46,695	0,023	0,015	362240,743	1,841	0,015	360673,189	0,016	362355,626	5,020	2,68E-17
47,557	0.023	0.015	369843.170	1.901	0.015	368788.701	0.016	369579.077	5.000	2.81E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				1-Octubre d	e 2013	(K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
9,046	-0,045	0,018	69308,853	0,081	0,015	68150,354	0,022	69565,264	2,105	
13,338	0,012	0,018	102198,218	0,178	0,017	100787,967	0,020	101975,700	3,238	7,01E-16
17,159	0,027	0,018	132242,214	0,290	0,017	131057,655	0,019	166210,386	3,859	
21,666	0,030	0,017	166831,832	0,448	0,017	165358,300	0,018	166119,132	4,218	
24,216	0,030	0,017	186469,382	0,550	0,017	185539,693	0,018	186148,939	4,355	
27,114	0,030	0,017	209305,949	0,678	0,016	207735,617	0,017	209053,826	4,494	5,90E-16
29,714	0,027	0,017	229372,006	0,800	0,016	228077,356	0,017	228938,446	4,512	
31,568	0,027	0,016	243689,190	0,894	0,016	242521,236	0,017	244509,268	4,568	
33,600	0,025	0,016	260011,677	1,001	0,016	258681,811	0,016	259889,080	4,586	8,58E-16
35,453	0,025	0,016	274355,074	1,106	0,016	272618,587	0,016	274663,432	4,667	
36,972	0,024	0,016	286110,517	1,193	0,016	284437,681	0,016	286452,938	4,674	
38,346	0,024	0,016	296741,224	1,275	0,016	295217,884	0,016	296513,867	4,700	
39,976	0,024	0,016	309354,486	1,378	0,016	307935,720	0,016	308160,343	4,757	
41,866	0,023	0,016	324782,822	1,499	0,015	323381,251	0,016	334444,182	4,788	4,56E-16
43,122	0,023	0,016	334526,218	1,581	0,015	332699,400	0,016	345033,906	4,802	2,14E-16
44,437	0,023	0,016	344724,196	1,677	0,015	342538,256	0,016	345174,693	4,908	1,08E-16
45,482	0,023	0,015	352832,146	1,748	0,015	351244,372	0,016	353953,392	4,906	2,41E-16
46,340	0,022	0,015	359487,443	1,808	0,015	358095,043	0,016	360043,471	4,906	
47,329	0,022	0,015	367158,670	1,878	0,015	365773,636	0,016	367865,275	4,909	2,68E-17
48,134	0,021	0,015	373404,601	1,935	0,015	371798,386	0,015	373527,105	4,895	5,62E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				3-Octubre d	le 2013	(K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
47,245	0,020	0,015	357506,244	1,867	0,015	353914,438	0,016	359614,065	4,713	
48,653	0,019	0,015	368159,469	1,966	0,015	365347,231	0,015	367716,205	4,687	
49,122	0,019	0,015	372564,743	1,999	0,015	349265,882	0,015	349265,882	4,699	4,02E-16
45,811	0,021	0,015	348397,058	1,763	0,015	344936,473	0,016	349728,837	4,708	2,68E-17
44,336	0,022	0,016	338022,706	1,667	0,015	335768,317	0,016	338120,580	4,791	2,68E-16
43,131	0,022	0,016	328829,887	1,583	0,015	326132,295	0,016	327904,636	4,734	
40,661	0,024	0,016	310775,764	1,426	0,015	309056,434	0,016	311580,831	4,789	4,02E-16
38,696	0,025	0,016	295760,378	1,306	0,016	294512,433	0,016	295570,627	4,808	
36,580	0,026	0,016	280278,626	1,177	0,016	278521,919	0,016	279558,772	4,772	
34,395	0,027	0,016	263543,140	1,051	0,016	262238,703	0,016	263534,541	4,710	0,00000
32,222	0,028	0,016	246886,224	0,932	0,016	245699,427	0,017	247142,435	4,645	
28,965	0,030	0,017	222483,271	0,768	0,016	221321,329	0,017	222901,629	4,602	
26,598	0,030	0,017	204813,396	0,655	0,016	202925,464	0,017	204381,875	4,468	7,50E-16
24,071	0,029	0,017	185350,377	0,544	0,017	167216,492	0,018	167216,492	4,316	
21,773	0,030	0,017	167659,279	0,452	0,017	143874,568	0,018	143874,568	4,212	
18,804	0,031	0,018	144796,725	0,345	0,017	143687,592	0,019	144892,639	4,096	8,07E-16
16,139	0,032	0,018	124580,955	0,261	0,018	123469,855	0,019	124209,651	3,952	0,00E+00
13,655	0,027	0,019	105673,101	0,190	0,018	104699,042	0,019	106009,444	3,671	
11,125	0,018	0,019	86089,632	0,129	0,018	84940,926	0,021	86539,534	3,324	
8.417	-0.006	0.020	65136.445	0.076	0.016	63957,850	0.022	65251.591	2.852	2.25E-15

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				8-Octubre d	e 2013	(K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom (-)	ks'(mm)
				(mca)						
12,411	-0,017	0,018	94386,938	0,148	0,017	93704,788	0,019	94606,034	2,513	0,00000
15,583	0,014	0,018	119398,144	0,237	0,017	118499,995	0,019	119432,795	3,357	8,07E-16
19,310	0,024	0,018	148037,097	0,358	0,017	146956,184	0,018	173029,603	3,819	1,07E-15
22,654	0,028	0,017	173148,006	0,485	0,017	171752,228	0,018	172857,075	4,184	
26,314	0,029	0,017	201620,549	0,642	0,017	200733,138	0,017	202050,376	4,430	2,69E-16
29,252	0,029	0,017	224131,747	0,781	0,016	222868,018	0,017	223622,115	4,554	
31,915	0,028	0,016	245149,030	0,917	0,016	243694,168	0,017	245329,805	4,676	1,08E-16
34,245	0,028	0,016	262388,620	1,046	0,016	260817,658	0,017	262159,940	4,781	
36,349	0,026	0,016	278514,502	1,163	0,016	276455,723	0,016	278213,030	4,747	
38,233	0,025	0,016	292949,624	1,273	0,016	291561,197	0,016	292790,905	4,737	5,92E-16
39,983	0,025	0,016	307882,056	1,383	0,016	306526,084	0,016	308196,778	4,818	
41,787	0,024	0,016	323365,208	1,499	0,016	321636,987	0,016	323370,256	4,858	
43,172	0,023	0,016	333257,554	1,587	0,015	332152,211	0,016	333993,243	4,820	1,61E-16
44,337	0,022	0,016	343099,780	1,666	0,015	341520,291	0,016	352112,049	4,836	
45,483	0,023	0,015	351969,023	1,749	0,015	350455,880	0,016	362222,134	4,901	
46,662	0,022	0,015	361095,301	1,829	0,015	359637,175	0,016	360061,549	4,876	2,16E-16
47,319	0,021	0,015	367083,473	1,874	0,015	365438,833	0,016	367088,550	4,859	2,42E-16
48,167	0,021	0,015	373665,246	1,937	0,015	371926,507	0,015	373364,436	4,888	1,88E-16
48,746	0,021	0,015	380022,958	1,980	0,015	378100,444	0,015	378297,018	4,913	
49,253	0,021	0,015	383031,822	2,018	0,015	380678,983	0,015	381114,361	4,919	1,61E-16

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				17-Octubre	de 2013	B (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom (-)	ks'(mm)
				(mca)						
9,516	-0,081	0,017	70570,519	0,083	0,014	67823,785	0,020	71722,453	1,477	0,00000
12,592	-0,008	0,018	93858,141	0,155	0,016	90579,606	0,020	94099,012	2,721	3,23E-16
16,870	0,027	0,018	125742,541	0,282	0,017	123283,753	0,019	126735,132	3,795	
20,500	0,031	0,018	153189,282	0,407	0,017	151196,663	0,018	152683,110	4,145	
23,442	0,033	0,017	174726,100	0,524	0,017	172928,407	0,018	174218,375	4,406	2,69E-16
26,228	0,033	0,017	196487,531	0,645	0,017	194521,009	0,018	195960,605	4,570	
28,717	0,032	0,017	214587,601	0,763	0,016	212404,617	0,017	214914,037	4,687	2,10E-32
31,662	0,031	0,017	237787,839	0,913	0,016	236104,697	0,017	236767,086	4,789	8,04E-16
33,415	0,029	0,016	250954,505	1,005	0,016	248992,079	0,017	248992,079	4,784	
35,506	0,027	0,016	267328,097	1,120	0,016	264784,714	0,017	266922,519	4,765	
37,261	0,027	0,016	281247,974	1,222	0,016	278403,289	0,017	283701,649	4,793	8,34E-16
38,762	0,026	0,016	292576,939	1,316	0,016	290131,629	0,016	293490,713	4,862	3,50E-16
40,090	0,026	0,016	302608,043	1,399	0,016	300520,064	0,016	303782,654	4,882	4,03E-16
41,659	0,024	0,016	315238,066	1,496	0,015	312290,967	0,016	327338,346	4,837	
43,233	0,024	0,016	327148,458	1,602	0,015	324850,578	0,016	337165,429	4,887	3,78E-16
44,524	0,024	0,016	336914,759	1,691	0,015	334235,561	0,016	335292,566	4,919	5,36E-17
45,815	0,023	0,015	346684,277	1,777	0,015	344163,697	0,016	345649,342	4,868	1,61E-16
47,389	0,023	0,015	358595,626	1,893	0,015	355910,468	0,016	359821,673	4,921	0,00000
48,755	0,022	0,015	368931,794	1,991	0,015	365041,845	0,016	367073,821	4,911	3,50E-16
49,393	0,022	0,015	374696,330	2,038	0,015	371507,361	0,016	372968,064	4,913	5,22E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				18 - Octubre d	e 2013	(K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f máx	Re	a prom	ks'(mm)
				(mca)						
9.740	-0.027	0.019	69868.644	0.097	0.017	68732.331	0.020	69500.895	2.404	0.00000
14.075	0.026	0.019	100961.971	0.203	0.018	99683.143	0.020	100918.305	3.597	3.23E-16
17.815	0.033	0.018	127873.348	0.318	0.017	125972.804	0.019	153399.993	4.025	
21.253	0.035	0.018	152845.384	0.441	0.017	151891.528	0.018	153570.996	4.305	5.40E-16
23.366	0.034	0.018	168037.705	0.524	0.017	166915.871	0.018	167771.266	4.383	
25.472	0.033	0.017	183184.187	0.614	0.017	181897.716	0.018	182772.621	4.454	
27.742	0.031	0.017	200544.704	0.717	0.017	197401.097	0.018	199652.223	4.513	4.29E-16
29.809	0.030	0.017	216040.779	0.817	0.016	212953.638	0.018	219800.469	4.577	
32.093	0.030	0.017	234391.175	0.937	0.016	231944.007	0.017	232656.488	4.698	3.23E-16
33.807	0.028	0.016	246274.782	1.028	0.016	244672.452	0.017	246336.758	4.677	2.15E-16
35.665	0.029	0.016	260480.276	1.137	0.016	258872.359	0.017	260795.361	4.797	2.69E-16
37.161	0.028	0.016	272094.824	1.227	0.016	270758.214	0.017	272315.657	4.868	
38.577	0.028	0.016	282469.455	1.313	0.016	281241.983	0.016	283226.892	4.877	6.33E-32
39.859	0.027	0.016	291857.628	1.394	0.016	290521.534	0.016	306951.477	4.890	1.07E-16
41.710	0.026	0.016	306976.025	1.512	0.016	305476.570	0.016	321315.487	4.915	
43.482	0.025	0.016	320830.358	1.627	0.016	319335.602	0.016	319335.602	4.889	9.44E-16
45.267	0.024	0.016	333995.964	1.750	0.015	332259.245	0.016	334516.737	4.892	3.23E-16
47.039	0.024	0.016	347957.675	1.879	0.015	346338.961	0.016	348614.131	4.952	
48.691	0.023	0.015	361091.271	1.999	0.015	359474.358	0.016	360567.914	4.964	5.38E-17
49.990	0.023	0.015	370726.760	2.099	0.015	367938.848	0.016	368913.821	4.999	

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				2-Diciembre	de 201	3 (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
14.164	-0.010	0.017	103713.535	0.192	0.017	102532.788	0.018	103650.953	2.649	0.00000
17.291	0.016	0.018	125958.614	0.290	0.017	124418.668	0.018	125699.551	3.435	2.69E-16
21.740	0.028	0.017	159246.398	0.452	0.017	158004.261	0.018	178625.453	4.049	
24.439	0.031	0.017	178946.658	0.565	0.017	177460.896	0.018	178658.016	4.331	3.78E-16
27.144	0.031	0.017	198753.226	0.686	0.016	197744.322	0.017	199690.409	4.476	
31.183	0.031	0.017	228910.792	0.891	0.016	225357.975	0.017	229645.376	4.753	0.00E+00
34.122	0.030	0.017	250484.311	1.050	0.016	249116.309	0.017	250081.183	4.822	
36.696	0.028	0.016	270072.222	1.197	0.016	268706.290	0.017	270016.512	4.843	1.18E-15
38.799	0.027	0.016	285548.635	1.324	0.016	284359.525	0.016	284575.599	4.849	
40.287	0.026	0.016	297254.368	1.417	0.015	296192.413	0.016	297404.695	4.867	
41.625	0.026	0.016	307903.714	1.506	0.016	306017.694	0.016	307435.833	4.928	5.38E-17
42.630	0.026	0.016	316139.404	1.574	0.016	314786.338	0.016	315546.889	4.972	1.61E-16
43.606	0.026	0.016	323381.060	1.642	0.016	322166.942	0.016	323764.719	5.017	
45.018	0.026	0.016	333856.253	1.744	0.016	332215.364	0.016	343778.226	5.079	
46.183	0.026	0.016	343366.795	1.826	0.016	341692.534	0.016	349840.415	5.100	5.09E-16
47.016	0.025	0.016	350437.597	1.883	0.015	346460.125	0.016	349701.802	5.071	
48.126	0.026	0.016	358712.683	1.974	0.015	356355.788	0.016	357320.060	5.211	3.76E-16
48.362	0.026	0.016	360470.424	1.994	0.015	352577.883	0.016	358094.110	5.235	1.61E-16
48.901	0.026	0.016	364487.089	2.036	0.015	360708.201	0.016	360934.306	5.258	
48.782	0.026	0.016	364524.856	2.031	0.015	361845.577	0.016	363411.251	5.320	1.20E-16

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				3-Diciembre de	2013 (K _m =0)				
			Promedios		Ν	línimos	Ν	láximos		
Caudal (L/s)	\mathbf{k}_{s} (mm)	f(-)	Re(-)	Delta Presión(mca)	f (-)	Re(-)	f (-)	Re(-)	a prom(-)	ks'(mm)
9,242	-0,037	0,019	66463,804	0,086	0,015	65355,223	0,022	68186,833	2,284	0,00000
12,631	0,017	0,019	90840,288	0,164	0,017	89457,478	0,020	89562,878	3,311	
15,090	0,029	0,019	108524,862	0,232	0,017	107129,747	0,020	123456,262	3,737	
17,133	0,032	0,018	123213,030	0,295	0,018	122087,326	0,019	123661,190	3,954	9,17E-16
20,109	0,039	0,018	144988,902	0,401	0,018	143753,068	0,019	145965,156	4,377	
23,048	0,039	0,018	166182,734	0,517	0,017	164611,615	0,018	165997,964	4,595	2,15E-16
25,312	0,040	0,018	182504,980	0,616	0,017	178291,124	0,018	180148,767	4,804	
27,465	0,034	0,017	198539,415	0,708	0,016	192937,280	0,018	200578,155	4,661	1,08E-16
29,608	0,037	0,017	214030,954	0,821	0,016	209335,857	0,018	217293,816	4,970	4,30E-16
31,620	0,036	0,017	229166,562	0,927	0,016	225719,845	0,018	229374,499	5,038	3,23E-16
33,559	0,034	0,017	243219,442	1,031	0,016	240616,862	0,018	242901,951	5,030	
35,144	0,032	0,017	255362,550	1,119	0,016	253809,297	0,017	254262,740	5,015	3,76E-16
36,614	0,032	0,016	266044,320	1,207	0,016	264533,772	0,017	266001,092	5,062	
38,045	0,032	0,016	277147,049	1,297	0,016	275892,088	0,017	285350,690	5,163	0,00E+00
39,251	0,030	0,016	285934,601	1,366	0,016	284603,231	0,016	295384,712	5,059	5,38E-17
40,493	0,030	0,016	295738,714	1,450	0,016	294591,171	0,016	295346,221	5,158	5,40E-17
41,478	0,030	0,016	302933,245	1,516	0,016	301248,003	0,016	302576,578	5,184	
42,597	0,030	0,016	311904,403	1,592	0,016	310829,006	0,016	311413,045	5,229	
43,776	0,029	0,016	320532,172	1,674	0,016	319286,244	0,016	321177,401	5,260	0,00E+00
44,851	0,028	0,016	328367,323	1,745	0,016	326845,423	0,016	328100,197	5,212	9,63E-16
45,716	0,028	0,016	328368,592	1,745	0,016	326845,423	0,016	327938,123	5,210	1,04E-15
46,387	0,028	0,016	328371,150	1,745	0,016	326845,423	0,016	328028,895	5,208	1,04E-15
46,925	0,028	0,016	328373,782	1,745	0,016	326845,423	0,016	328140,200	5,207	1,04E-15
47,858	0,028	0,016	328376,713	1,745	0,016	326845,423	0,016	328198,586	5,206	9,63E-16
48,746	0.028	0.016	328378.841	1.745	0.016	326845.423	0.016	328433.383	5.205	9.63E-16

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				4-Diciembre	de 2013	3 (K _m =0)				
			Promedios		Μ	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
5,517	-0,314	0,013	39369,910	0,021	0,010	37677,216	0,016	39025,786	0,211	
9,209	-0,042	0,018	66057,300	0,085	0,016	64646,840	0,024	67634,023	2,190	
12,243	0,013	0,019	87890,863	0,155	0,017	86674,824	0,020	109437,581	3,203	
15,230	0,030	0,019	109245,930	0,237	0,017	107485,469	0,019	109499,792	3,787	
18,069	0,036	0,018	129609,154	0,327	0,018	128140,700	0,019	129455,830	4,143	
20,529	0,041	0,018	147635,307	0,418	0,018	146944,725	0,019	148183,415	4,498	
23,210	0,040	0,018	166921,579	0,525	0,017	165759,145	0,018	167069,017	4,661	
26,123	0,038	0,017	187864,708	0,651	0,017	186430,485	0,018	187816,587	4,751	
28,480	0,036	0,017	204815,141	0,762	0,017	203202,282	0,018	204730,152	4,787	
31,186	0,036	0,017	224855,788	0,902	0,017	223591,863	0,017	225420,769	4,966	1,29E-15
33,539	0,034	0,017	241821,053	1,030	0,016	239976,827	0,017	241790,100	5,018	
35,503	0,033	0,017	255983,941	1,143	0,016	254518,949	0,017	256723,502	5,061	2,15E-16
37,240	0,032	0,016	269200,714	1,247	0,016	268166,172	0,017	268366,621	5,096	1,07E-16
39,145	0,030	0,016	282974,630	1,363	0,016	281657,831	0,017	297441,550	5,082	4,29E-16
40,998	0,029	0,016	297132,749	1,479	0,016	295961,094	0,016	305965,376	5,057	6,99E-16
42,239	0,029	0,016	306122,377	1,566	0,016	303809,570	0,016	306201,022	5,140	
43,395	0,030	0,016	314506,076	1,652	0,016	306017,214	0,016	314741,568	5,276	
45,312	0,028	0,016	329239,199	1,782	0,016	315383,291	0,016	330568,322	5,233	
46,660	0,027	0,016	339035,871	1,879	0,016	337346,518	0,016	337433,093	5,235	
48,191	0,027	0,016	350163,784	1,998	0,016	346859,733	0,016	349403,497	5,322	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				5-Diciembre	de 2013	3 (K _m =0)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
5,927	-0,285	0,013	41316,252	0,025	0,003	39939,972	0,028	41488,629	0,391	0,00000
9,264	-0,058	0,018	64743,012	0,084	0,014	63342,998	0,023	65342,292	1,950	8,60E-16
12,990	0,008	0,019	93008,959	0,171	0,017	91828,516	0,020	114551,748	3,100	
15,846	0,028	0,018	113664,072	0,253	0,018	112767,240	0,019	114517,050	3,750	
19,178	0,034	0,018	137921,299	0,364	0,017	135911,823	0,019	136997,313	4,146	1,13E-15
22,069	0,036	0,018	158710,165	0,474	0,017	156993,205	0,019	158586,741	4,400	
24,576	0,035	0,017	177198,877	0,577	0,017	174191,101	0,018	179303,017	4,525	8,07E-16
27,691	0,035	0,017	199660,546	0,721	0,016	195869,052	0,018	199957,257	4,711	1,40E-15
29,737	0,034	0,017	214966,528	0,821	0,016	212483,967	0,018	230824,332	4,775	6,99E-16
31,851	0,034	0,017	230835,823	0,934	0,017	229124,636	0,017	230543,675	4,915	5,92E-16
33,998	0,031	0,017	246400,902	1,049	0,016	245304,797	0,017	246771,751	4,879	8,60E-16
35,753	0,031	0,016	259117,641	1,152	0,016	258045,265	0,017	258840,225	4,971	
37,504	0,030	0,016	272509,247	1,256	0,016	271518,401	0,017	272148,712	4,991	
39,225	0,029	0,016	285014,101	1,364	0,016	283733,501	0,017	294938,914	5,027	
40,680	0,029	0,016	296341,193	1,458	0,016	294923,098	0,016	305861,405	5,078	
42,001	0,029	0,016	305966,417	1,550	0,016	304357,085	0,016	306407,987	5,173	
44,252	0,028	0,016	323188,805	1,705	0,016	321935,291	0,016	323781,425	5,221	
46,171	0,027	0,016	338071,181	1,840	0,016	324730,403	0,016	338257,682	5,233	4,82E-16
47,766	0,026	0,016	349747,632	1,953	0,016	348352,583	0,016	349737,541	5,186	6,18E-16
49,334	0,026	0,016	362151,077	2,078	0,015	360196,865	0,016	360419,985	5,296	

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA *Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC*

CÁLCULOS PARA COEFICIENTE DE PÉRDIDAS MENORES IGUAL A 0,01 (Km=0,01)

				5-Septiembre o	le 2013	(K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
10,796	0,006	0,019	80874,775	0,123	0,011	79166,241	0,021	80566,865	3,044	0,00000
12,682	0,035	0,019	95124,354	0,172	0,019	93969,391	0,020	95435,107	3,788	
14,082	0,040	0,019	105759,828	0,210	0,018	103277,891	0,020	105400,969	4,027	1,18E-15
15,518	0,040	0,019	116578,043	0,251	0,018	115141,545	0,020	116249,223	4,135	
17,090	0,037	0,018	128670,569	0,298	0,017	127149,601	0,019	128213,840	4,177	
18,104	0,041	0,018	136306,851	0,334	0,017	134289,940	0,019	137385,383	4,378	7,50E-16
20,263	0,040	0,018	152945,799	0,411	0,017	151062,390	0,019	152251,923	4,504	
21,389	0,037	0,018	161649,146	0,452	0,017	157779,154	0,019	161010,734	4,450	6,97E-16
23,901	0,035	0,017	180632,473	0,553	0,017	178581,362	0,018	180222,961	4,536	
23,884	0,036	0,017	180732,014	0,554	0,017	178805,370	0,018	180120,068	4,580	
25,247	0,035	0,017	191048,788	0,613	0,016	188903,467	0,018	191560,423	4,624	
27,323	0,036	0,017	206754,078	0,713	0,016	201762,711	0,018	205242,629	4,834	
19,072	0,039	0,018	144318,937	0,367	0,017	143035,488	0,019	145345,379	4,398	
30,345	0,031	0,017	229618,778	0,856	0,016	227792,164	0,017	229362,710	4,715	
31,463	0,030	0,017	239907,340	0,915	0,016	238262,156	0,017	239492,183	4,763	
32,749	0,030	0,017	250335,919	0,985	0,016	248864,452	0,017	250006,174	4,829	
34,206	0,030	0,016	261440,180	1,070	0,016	259962,138	0,017	262223,034	4,925	1,61E-16
35,425	0,030	0,016	271432,946	1,142	0,016	269930,332	0,017	272155,152	4,986	1,61E-16
36,520	0,029	0,016	279822,172	1,205	0,016	276593,365	0,017	279382,963	4,962	5,36E-16
37,722	0,028	0,016	288943,720	1,275	0,016	286873,126	0,016	289887,005	4,937	

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				12-Septiembre	de 2013	6 (K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re(-)	a prom(-)	ks'(mm)
				(mca)						
38,154	0,028	0,016	290166,490	1,293	0,013	300358,951	0,016	291873,113	4,949	0,00000
38,922	0,023	0,016	297481,428	1,316	0,007	306579,544	0,016	296608,077	4,614	2,62E-16
39,218	0,021	0,016	299768,039	1,344	0,015	298142,299	0,016	305300,916	4,497	
39,663	0,022	0,016	303905,007	1,378	0,016	302575,603	0,016	305239,965	4,606	8,04E-17
40,893	0,021	0,016	313329,725	1,455	0,015	310583,485	0,016	313849,644	4,593	4,02E-16
41,423	0,021	0,016	317390,310	1,489	0,015	313023,440	0,016	318104,619	4,591	4,82E-16
41,841	0,022	0,016	322184,516	1,521	0,015	320298,989	0,016	324414,154	4,686	4,29E-16
42,193	0,021	0,016	324496,763	1,541	0,015	323154,776	0,016	324619,139	4,641	
42,514	0,022	0,016	327372,498	1,566	0,015	325709,635	0,016	327434,243	4,695	
42,525	0,022	0,016	327451,010	1,566	0,015	326067,945	0,016	327691,459	4,684	1,88E-16
43,090	0,021	0,016	331807,863	1,604	0,015	329872,592	0,016	332928,759	4,692	3,55E-16
43,792	0,021	0,015	337208,517	1,652	0,015	335670,355	0,016	335810,864	4,696	
44,249	0,022	0,015	340728,986	1,686	0,015	339078,464	0,016	341043,223	4,739	
44,543	0,021	0,015	344698,326	1,705	0,015	343292,167	0,016	344729,470	4,742	
45,096	0,021	0,015	348545,773	1,741	0,015	344722,282	0,016	351859,579	4,704	4,61E-16
45,487	0,021	0,015	352001,689	1,771	0,015	350768,468	0,016	351160,425	4,750	
45.955	0.021	0.015	355621.773	1.807	0.015	353890.031	0.016	356196.981	4,786	6.18E-17

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				17-Septiembre	de 201	3 (K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re(-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
49,145	0,017	0,015	361690,505	1,712	0,015	360282,324	0,015	361065,508	4,423	1,91E-16
47,970	0,018	0,015	353944,015	1,938	0,015	350368,846	0,016	355801,721	4,466	
47,034	0,018	0,015	346984,403	1,876	0,015	331651,896	0,015	331651,896	4,467	2,41E-16
44,818	0,017	0,015	331529,085	1,290	0,015	329702,036	0,016	331681,536	4,347	
42,495	0,018	0,015	315140,223	1,549	0,015	313651,941	0,016	315265,534	4,369	0,00E+00
39,951	0,019	0,016	296272,558	1,381	0,015	294846,830	0,016	296073,116	4,295	2,42E-16
35,629	0,020	0,016	264225,315	1,122	0,016	262594,029	0,016	264076,032	4,266	1,34E-16
33,248	0,022	0,016	246566,953	0,993	0,016	245080,643	0,016	247116,389	4,263	
31,023	0,022	0,016	230065,238	0,874	0,016	228370,846	0,017	228789,531	4,198	1,61E-16
26,601	0,024	0,017	197274,093	0,661	0,016	195944,027	0,017	197529,436	4,150	3,23E-16
24,386	0,027	0,017	180848,402	0,566	0,016	179270,712	0,018	182794,009	4,154	5,36E-17
21,868	0,027	0,017	162993,677	0,462	0,017	161196,653	0,018	162953,386	4,056	5,38E-17
19,571	0,030	0,018	145874,504	0,379	0,017	144083,320	0,018	145189,527	4,057	
16,855	0,032	0,018	125629,960	0,288	0,018	111635,722	0,019	111635,722	3,954	
14,963	0,030	0,019	111525,456	0,231	0,018	90909,256	0,020	90909,256	3,793	2,15E-16
12,609	0,024	0,019	93984,064	0,167	0,018	88912,799	0,021	92445,622	3,501	5,40E-16
10,404	0,036	0,020	77745,300	0,119	0,017	73072,563	0,023	79844,445	3,639	1,61E-15
7,914	-0,018	0,019	59140,380	0,068	0,013	54763,590	0,025	57278,598	2,630	6,05E-16
13,933	0,031	0,019	103849,845	0,203	0,018	100801,568	0,021	102684,781	3,752	
17.768	0.031	0.018	132435.673	0.318	0.017	130484.676	0.019	132907.887	4.011	4.82E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				19-Septiembre	de 2013	B (K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom (-)	ks'(mm)
				(mca)						
15,927	0,028	0,018	117517,578	0,259	0,017	114099,341	0,020	118338,068	3,778	0,00000
18,292	0,030	0,018	135306,788	0,335	0,017	132478,472	0,019	136048,906	3,957	2,68E-16
20,412	0,032	0,018	151442,859	0,412	0,017	147745,745	0,019	172758,169	4,188	6,29E-32
23,437	0,025	0,017	173806,411	0,523	0,015	171434,977	0,018	172748,699	4,013	9,38E-16
25,980	0,025	0,017	193154,280	0,633	0,016	190045,661	0,017	193962,456	4,145	8,04E-16
28,565	0,022	0,017	212911,845	0,750	0,016	209919,477	0,017	212987,805	4,113	
31,355	0,023	0,016	234302,070	0,892	0,016	231594,562	0,017	234103,889	4,252	1,07E-16
33,596	0,021	0,016	252315,050	1,009	0,016	249819,733	0,017	251088,220	4,240	4,56E-16
35,460	0,020	0,016	266315,828	1,113	0,015	263385,909	0,016	265344,531	4,269	4,29E-16
36,907	0,022	0,016	278579,191	1,205	0,015	275619,363	0,016	279462,243	4,444	2,14E-16
38,737	0,021	0,016	292393,670	1,315	0,015	290266,393	0,016	292622,127	4,450	
40,354	0,020	0,016	305364,804	1,416	0,015	303119,011	0,016	304848,291	4,467	
41,826	0,020	0,016	316499,076	1,513	0,015	313820,933	0,016	316723,132	4,498	1,07E-16
43,168	0,019	0,015	327473,950	1,599	0,015	323950,440	0,016	338586,913	4,473	
44,369	0,019	0,015	336588,097	1,682	0,015	333464,473	0,016	348042,729	4,492	5,38E-17
45,521	0,017	0,015	346188,674	1,754	0,015	343033,858	0,016	345638,337	4,405	
46,518	0,017	0,015	353769,537	1,826	0,015	350616,212	0,016	354860,952	4,425	
47,437	0,017	0,015	361660,237	1,889	0,015	358157,396	0,015	361536,787	4,412	
46,642	0,015	0,015	366306,432	1,811	0,015	365204,173	0,015	366295,498	4,278	2,95E-16
47,921	0,014	0,015	377272,721	1,899	0,015	375922,154	0,015	377238,172	4,249	2,01E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				24-Septiembre	de 2013	3 (K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re(-)	a prom (-)	ks'(mm)
				(mca)						
8,320	-0,076	0,018	63275,928	0,068	0,015	61817,264	0,019	63511,770	1,673	4,84E-16
11,411	-0,010	0,018	86783,104	0,132	0,017	85907,858	0,019	86192,651	2,682	
14,590	0,016	0,018	111867,510	0,214	0,017	110468,857	0,020	136073,127	3,375	
17,619	0,023	0,018	135335,723	0,306	0,017	134249,075	0,019	135732,841	3,725	5,36E-16
20,625	0,024	0,017	158815,060	0,410	0,017	158040,075	0,018	159304,468	3,899	1,07E-16
23,181	0,024	0,017	178500,684	0,509	0,016	177351,943	0,018	178962,568	4,020	2,14E-16
24,593	0,024	0,017	189375,260	0,568	0,016	187991,787	0,018	188990,480	4,074	
27,215	0,023	0,017	209564,954	0,684	0,016	207931,056	0,017	209600,455	4,149	3,22E-16
30,078	0,021	0,016	232186,964	0,819	0,016	231125,271	0,017	250059,136	4,177	
32,547	0,019	0,016	251864,037	0,943	0,016	250133,880	0,016	252141,816	4,147	9,92E-16
34,773	0,020	0,016	269088,127	1,070	0,016	267671,924	0,016	269117,322	4,293	
36,812	0,019	0,016	285576,628	1,186	0,015	284159,753	0,016	286694,153	4,305	
38,568	0,018	0,016	299198,515	1,285	0,015	297606,619	0,016	298350,966	4,234	
40,062	0,017	0,015	311555,327	1,378	0,015	310034,138	0,016	321490,303	4,274	3,75E-16
41,118	0,017	0,015	320554,359	1,446	0,015	318715,851	0,016	329792,528	4,297	
42,267	0,017	0,015	329512,131	1,521	0,015	328312,957	0,015	328871,892	4,317	3,22E-16
43,235	0,017	0,015	337887,016	1,583	0,015	336341,959	0,016	338706,296	4,305	
44,182	0,016	0,015	346138,956	1,645	0,015	344430,163	0,015	345722,330	4,305	
45,042	0,016	0,015	352875,703	1,703	0,015	351067,514	0,015	352977,481	4,299	
45,789	0,015	0,015	359609,542	1,752	0,015	358253,753	0,015	359970,235	4,281	

Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				27-Septiembre	e de 201	3 (K _m =0,01)				
			Promedios		N	línimos	M	áximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
8,492	-0,001	0,020	64097,011	0,079	0,014	62360,534	0,026	64133,688	2,889	0,00000
11,618	0,030	0,019	87693,793	0,145	0,018	86398,215	0,021	88103,289	3,604	
14,550	0,040	0,019	109902,488	0,223	0,018	108273,988	0,020	132663,847	4,085	9,11E-16
17,557	0,035	0,018	132858,866	0,312	0,018	131821,370	0,019	132851,390	4,135	1,03E-15
20,158	0,032	0,018	152535,520	0,401	0,017	151521,216	0,018	152553,572	4,161	8,58E-16
22,602	0,030	0,017	171463,912	0,494	0,017	170489,399	0,018	171215,130	4,248	
24,682	0,029	0,017	187708,295	0,579	0,017	186363,804	0,018	187622,052	4,300	
27,256	0,026	0,017	208316,351	0,692	0,016	206716,851	0,017	208307,567	4,315	
29,757	0,024	0,016	227436,662	0,810	0,016	226236,638	0,017	228456,531	4,301	9,65E-16
31,892	0,022	0,016	244359,317	0,917	0,016	243249,456	0,016	244691,619	4,300	5,92E-16
34,171	0,022	0,016	261819,495	1,042	0,016	260641,153	0,016	261655,687	4,372	
36,126	0,023	0,016	278179,215	1,159	0,016	276629,317	0,016	277031,953	4,531	9,41E-16
37,766	0,022	0,016	290806,545	1,255	0,015	289206,196	0,016	290845,001	4,508	
39,362	0,021	0,016	303102,937	1,352	0,015	301471,187	0,016	314559,118	4,505	
40,643	0,020	0,016	313742,707	1,432	0,015	311952,360	0,016	326509,890	4,513	1,34E-16
42,160	0,020	0,015	326254,923	1,530	0,015	324034,138	0,016	325836,393	4,523	
43,646	0,019	0,015	337752,820	1,629	0,015	335984,235	0,016	337041,636	4,528	2,14E-16
45,254	0,018	0,015	351062,093	1,736	0,015	349549,777	0,015	350481,763	4,503	1,88E-16
46,695	0,018	0,015	362240,743	1,841	0,015	360673,189	0,015	362355,626	4,555	
47.557	0.018	0.015	369843.170	1.901	0.015	368788.701	0.015	369579.077	4.534	3.21E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				1-Octubre o	de 2013	(K _m =0,01)				
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
9,046	-0,054	0,018	69308,853	0,081	0,014	68150,354	0,021	69565,264	1,951	0,00E+00
13,338	0,003	0,018	102198,218	0,178	0,016	100787,967	0,019	101975,700	3,002	7,01E-16
17,159	0,019	0,018	132242,214	0,290	0,017	131057,655	0,019	166210,386	3,570	
21,666	0,023	0,017	166831,832	0,448	0,017	165358,300	0,018	166119,132	3,889	
24,216	0,023	0,017	186469,382	0,550	0,016	185539,693	0,017	186148,939	4,007	1,07E-16
27,114	0,023	0,017	209305,949	0,678	0,016	207735,617	0,017	209053,826	4,126	2,68E-16
29,714	0,021	0,016	229372,006	0,800	0,016	228077,356	0,017	228938,446	4,133	
31,568	0,020	0,016	243689,190	0,894	0,016	242521,236	0,017	244509,268	4,179	4,82E-16
33,600	0,019	0,016	260011,677	1,001	0,016	258681,811	0,016	259889,080	4,189	2,95E-16
35,453	0,019	0,016	274355,074	1,106	0,016	272618,587	0,016	274663,432	4,258	1,40E-15
36,972	0,019	0,016	286110,517	1,193	0,015	284437,681	0,016	286452,938	4,260	4,02E-16
38,346	0,018	0,016	296741,224	1,275	0,015	295217,884	0,016	296513,867	4,280	3,23E-16
39,976	0,018	0,015	309354,486	1,378	0,015	307935,720	0,016	308160,343	4,329	5,36E-17
41,866	0,018	0,015	324782,822	1,499	0,015	323381,251	0,016	334444,182	4,352	
43,122	0,017	0,015	334526,218	1,581	0,015	332699,400	0,016	345033,906	4,362	
44,437	0,018	0,015	344724,196	1,677	0,015	342538,256	0,015	345174,693	4,456	
45,482	0,018	0,015	352832,146	1,748	0,015	351244,372	0,015	353953,392	4,452	3,22E-16
46,340	0,017	0,015	359487,443	1,808	0,015	358095,043	0,015	360043,471	4,450	
47,329	0,017	0,015	367158,670	1,878	0,015	365773,636	0,015	367865,275	4,450	
48,134	0,016	0,015	373404,601	1,935	0,015	371798,386	0,015	373527,105	4,434	9,69848E-05

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				3-Octubre de	2013 (K _m =0,01)				
			Promedios		M	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
47,245	0,015	0,015	357506,244	1,867	0,015	353914,438	0,015	359614,065	4,270	
48,653	0,015	0,015	368159,469	1,966	0,015	365347,231	0,015	367716,205	4,243	
49,122	0,014	0,015	372564,743	1,999	0,015	349265,882	0,015	349265,882	4,252	2,68E-16
45,811	0,016	0,015	348397,058	1,763	0,015	344936,473	0,015	349728,837	4,269	2,68E-16
44,336	0,017	0,015	338022,706	1,667	0,015	335768,317	0,016	338120,580	4,349	
43,131	0,017	0,015	328829,887	1,583	0,015	326132,295	0,016	327904,636	4,300	
40,661	0,019	0,015	310775,764	1,426	0,015	309056,434	0,016	311580,831	4,358	
38,696	0,020	0,016	295760,378	1,306	0,015	294512,433	0,016	295570,627	4,382	8,04E-17
36,580	0,020	0,016	280278,626	1,177	0,016	278521,919	0,016	279558,772	4,354	
34,395	0,021	0,016	263543,140	1,051	0,016	262238,703	0,016	263534,541	4,303	
32,222	0,021	0,016	246886,224	0,932	0,016	245699,427	0,016	247142,435	4,250	5,90E-16
28,965	0,023	0,016	222483,271	0,768	0,016	221321,329	0,017	222901,629	4,221	2,15E-16
26,598	0,023	0,017	204813,396	0,655	0,016	202925,464	0,017	204381,875	4,104	
24,071	0,022	0,017	185350,377	0,544	0,017	167216,492	0,017	167216,492	3,970	
21,773	0,022	0,017	167659,279	0,452	0,017	143874,568	0,018	143874,568	3,883	
18,804	0,023	0,018	144796,725	0,345	0,017	143687,592	0,019	144892,639	3,786	
16,139	0,023	0,018	124580,955	0,261	0,017	123469,855	0,019	124209,651	3,664	
13,655	0,018	0,018	105673,101	0,190	0,017	104699,042	0,019	106009,444	3,410	
11,125	0,008	0,019	86089,632	0,129	0,018	84940,926	0,020	86539,534	3,096	9,11E-16
8,417	-0,017	0,019	65136,445	0,076	0,016	63957,850	0,022	65251,591	2,664	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

				8-Octubre de	2013 ((m =0,01				
			Promedios		M	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
12,411	-0,025	0,017	94386,938	0,148	0,016	93704,788	0,018	94606,034	2,320	7,53E-16
15,583	0,006	0,018	119398,144	0,237	0,017	118499,995	0,019	119432,795	3,103	1,08E-16
19,310	0,016	0,017	148037,097	0,358	0,017	146956,184	0,018	173029,603	3,522	
22,654	0,021	0,017	173148,006	0,485	0,016	171752,228	0,017	172857,075	3,853	1,62E-16
26,314	0,022	0,017	201620,549	0,642	0,016	200733,138	0,017	202050,376	4,069	2,69E-16
29,252	0,022	0,016	224131,747	0,781	0,016	222868,018	0,017	223622,115	4,175	
31,915	0,022	0,016	245149,030	0,917	0,016	243694,168	0,016	245329,805	4,279	
34,245	0,022	0,016	262388,620	1,046	0,016	260817,658	0,016	262159,940	4,370	3,50E-16
36,349	0,020	0,016	278514,502	1,163	0,016	276455,723	0,016	278213,030	4,331	1,08E-16
38,233	0,019	0,016	292949,624	1,273	0,015	291561,197	0,016	292790,905	4,316	5,11E-16
39,983	0,019	0,016	307882,056	1,383	0,015	306526,084	0,016	308196,778	4,386	3,23E-16
41,787	0,019	0,015	323365,208	1,499	0,015	321636,987	0,016	323370,256	4,418	
43,172	0,018	0,015	333257,554	1,587	0,015	332152,211	0,015	333993,243	4,378	
44,337	0,017	0,015	343099,780	1,666	0,015	341520,291	0,015	352112,049	4,389	2,41E-16
45,483	0,018	0,015	351969,023	1,749	0,015	350455,880	0,015	362222,134	4,447	
46,662	0,017	0,015	361095,301	1,829	0,015	359637,175	0,015	360061,549	4,421	
47,319	0,016	0,015	367083,473	1,874	0,015	365438,833	0,015	367088,550	4,402	
48,167	0,016	0,015	373665,246	1,937	0,015	371926,507	0,015	373364,436	4,428	5,38E-17
48,746	0,016	0,015	380022,958	1,980	0,015	378100,444	0,015	378297,018	4,449	
49,253	0,016	0,015	383031,822	2,018	0,015	380678,983	0,015	381114,361	4,453	2,41E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

17-Octubre de 2013 (K _m =0,01)										
			Promedios		M	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
9,516	-0,089	0,016	70570,519	0,083	0,014	67823,785	0,020	71722,453	1,356	6,43E-16
12,592	-0,016	0,018	93858,141	0,155	0,016	90579,606	0,020	94099,012	2,517	
16,870	0,018	0,018	125742,541	0,282	0,017	123283,753	0,019	126735,132	3,514	8,60E-16
20,500	0,023	0,017	153189,282	0,407	0,017	151196,663	0,018	152683,110	3,828	2,69E-16
23,442	0,026	0,017	174726,100	0,524	0,017	172928,407	0,018	174218,375	4,061	1,13E-15
26,228	0,026	0,017	196487,531	0,645	0,016	194521,009	0,018	195960,605	4,205	
28,717	0,025	0,017	214587,601	0,763	0,016	212404,617	0,017	214914,037	4,305	
31,662	0,024	0,016	237787,839	0,913	0,016	236104,697	0,017	236767,086	4,390	
33,415	0,023	0,016	250954,505	1,005	0,016	248992,079	0,017	248992,079	4,379	5,38E-17
35,506	0,021	0,016	267328,097	1,120	0,016	264784,714	0,016	266922,519	4,354	6,45E-16
37,261	0,021	0,016	281247,974	1,222	0,015	278403,289	0,016	283701,649	4,373	2,42E-16
38,762	0,021	0,016	292576,939	1,316	0,015	290131,629	0,016	293490,713	4,434	
40,090	0,020	0,016	302608,043	1,399	0,015	300520,064	0,016	303782,654	4,448	3,50E-16
41,659	0,019	0,015	315238,066	1,496	0,015	312290,967	0,016	327338,346	4,401	5,09E-16
43,233	0,019	0,015	327148,458	1,602	0,015	324850,578	0,016	337165,429	4,443	1,89E-16
44,524	0,019	0,015	336914,759	1,691	0,015	334235,561	0,016	335292,566	4,469	5,36E-17
45,815	0,017	0,015	346684,277	1,777	0,015	344163,697	0,016	345649,342	4,419	
47,389	0,017	0,015	358595,626	1,893	0,015	355910,468	0,015	359821,673	4,464	
48,755	0,017	0,015	368931,794	1,991	0,015	365041,845	0,015	367073,821	4,450	
49,393	0,017	0,015	374696,330	2,038	0,015	371507,361	0,015	372968,064	4,451	1,61E-16

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

18-Octubre de 2013 (K _m =0,01)										
			Promedios		N	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom(-)	ks'(mm)
				(mca)						
9,740	-0,037	0,018	69868,644	0,097	0,017	68732,331	0,019	69500,895	2,233	2,15E-16
14,075	0,016	0,018	100961,971	0,203	0,017	99683,143	0,020	100918,305	3,343	
17,815	0,025	0,018	127873,348	0,318	0,017	125972,804	0,019	153399,993	3,731	
21,253	0,027	0,018	152845,384	0,441	0,017	151891,528	0,018	153570,996	3,979	
23,366	0,026	0,017	168037,705	0,524	0,017	166915,871	0,018	167771,266	4,044	3,23E-16
25,472	0,025	0,017	183184,187	0,614	0,017	181897,716	0,018	182772,621	4,102	
27,743	0,024	0,017	200547,679	0,717	0,016	197401,097	0,017	199398,361	4,148	3,76E-16
29,809	0,023	0,017	216040,779	0,817	0,016	212953,638	0,017	219800,469	4,201	8,60E-16
32,093	0,023	0,016	234391,175	0,937	0,016	231944,007	0,017	232656,488	4,306	
33,807	0,022	0,016	246274,782	1,028	0,016	244672,452	0,017	246336,758	4,280	1,08E-16
35,665	0,022	0,016	260480,276	1,137	0,016	258872,359	0,016	260795,361	4,386	
37,160	0,022	0,016	272094,088	1,227	0,016	270758,214	0,016	272378,326	4,447	
38,577	0,022	0,016	282469,455	1,313	0,016	281241,983	0,016	283226,892	4,452	1,08E-16
39,859	0,021	0,016	291857,628	1,394	0,016	290521,534	0,016	306951,477	4,460	4,56E-16
41,710	0,020	0,016	306976,025	1,512	0,015	305476,570	0,016	321315,487	4,478	
43,482	0,019	0,015	320830,358	1,627	0,015	319335,602	0,016	319335,602	4,447	8,09E-17
45,267	0,018	0,015	333995,964	1,750	0,015	332259,245	0,016	334516,737	4,445	2,42E-16
47,039	0,018	0,015	347955,487	1,879	0,015	346338,961	0,015	348634,871	4,497	2,96E-16
48,691	0,018	0,015	361091,271	1,999	0,015	359474,358	0,015	360567,914	4,502	2,69E-17
49,990	0,018	0,015	370726,760	2,099	0,015	367938,848	0,015	368913,821	4,532	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

2-Diciembre de 2013 (K _m =0,01)										
	Promedios					línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
14,164	-0,018	0,017	103713,535	0,192	0,016	102532,788	0,018	103650,953	2,442	3,23E-16
17,291	0,008	0,017	125958,614	0,290	0,017	124418,668	0,018	125699,551	3,173	
21,740	0,020	0,017	159246,398	0,452	0,017	158004,261	0,018	178625,453	3,733	4,82E-16
24,439	0,023	0,017	178946,658	0,565	0,016	177460,896	0,018	178658,016	3,988	3,78E-16
27,144	0,024	0,017	198753,226	0,686	0,016	197744,322	0,017	199690,409	4,115	1,61E-16
31,183	0,025	0,016	228910,792	0,891	0,016	225357,975	0,017	229645,376	4,360	5,38E-16
34,122	0,024	0,016	250484,311	1,050	0,016	249116,309	0,017	250081,183	4,414	1,61E-16
36,696	0,022	0,016	270072,222	1,197	0,016	268706,290	0,017	270016,512	4,426	1,10E-15
38,799	0,021	0,016	285548,635	1,324	0,016	284359,525	0,016	284575,599	4,424	6,45E-16
40,287	0,020	0,016	297254,368	1,417	0,015	296192,413	0,016	297404,695	4,436	0,00E+00
41,625	0,020	0,016	307903,714	1,506	0,015	306017,694	0,016	307435,833	4,490	3,50E-16
42,630	0,020	0,016	316139,404	1,574	0,015	314786,338	0,016	315546,889	4,527	
43,606	0,020	0,016	323379,777	1,642	0,015	322166,942	0,016	323610,495	4,566	1,08E-16
45,018	0,021	0,015	333856,253	1,744	0,015	332215,364	0,016	343778,226	4,620	
46,184	0,020	0,015	343368,849	1,826	0,015	341692,534	0,016	349840,415	4,636	
47,016	0,019	0,015	350437,597	1,883	0,015	346460,125	0,016	349701,802	4,606	
48,126	0,020	0,015	358712,683	1,974	0,015	356355,788	0,015	357320,060	4,734	1,05E-32
48,362	0,021	0,015	360470,424	1,994	0,015	352577,883	0,016	358094,110	4,756	
48,901	0,021	0,015	364487,089	2,036	0,015	360708,201	0,015	360934,306	4,776	2,69E-17
48,782	0,021	0,015	364524,856	2,031	0,015	361845,577	0,015	363411,251	4,834	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

3-Diciembre de 2013 (K _m =0,01)										
	Promedios					Mínimos		láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
9,242	-0,046	0,018	66463,804	0,086	0,015	65355,223	0,022	68186,833	2,123	2,15E-16
12,631	0,007	0,019	90840,288	0,164	0,017	89457,478	0,020	89562,878	3,079	
15,083	0,020	0,018	108524,862	0,232	0,017	107129,747	0,019	123456,262	3,471	
17,133	0,023	0,018	123213,030	0,295	0,017	122087,326	0,019	123661,190	3,667	
20,109	0,030	0,018	144988,902	0,401	0,017	143753,068	0,018	145965,156	4,053	3,23E-16
23,048	0,031	0,017	166182,734	0,517	0,017	164611,615	0,018	165997,964	4,245	
25,312	0,032	0,017	182504,980	0,616	0,016	178291,124	0,018	180148,767	4,433	3,76E-16
27,465	0,027	0,017	198539,415	0,708	0,016	192937,280	0,018	200578,155	4,290	8,60E-16
29,608	0,030	0,017	214030,954	0,821	0,016	209335,857	0,018	217293,816	4,572	
31,620	0,029	0,017	229166,562	0,927	0,016	225719,845	0,017	229374,499	4,629	1,08E-16
33,559	0,028	0,016	243219,442	1,031	0,016	240616,862	0,017	242901,951	4,613	
35,144	0,026	0,016	255362,550	1,119	0,016	253809,297	0,017	254262,740	4,593	
36,615	0,026	0,016	266044,464	1,207	0,016	264533,772	0,016	265763,030	4,632	1,08E-16
38,045	0,026	0,016	277147,049	1,297	0,016	275892,088	0,016	285350,690	4,723	4,56E-16
39,251	0,024	0,016	285934,601	1,366	0,016	284603,231	0,016	295384,712	4,621	
40,493	0,024	0,016	295738,714	1,450	0,016	294591,171	0,016	295346,221	4,709	8,09E-17
41,478	0,024	0,016	302933,245	1,516	0,016	301248,003	0,016	302576,578	4,731	2,42E-16
42,597	0,024	0,016	311904,403	1,592	0,016	310829,006	0,016	311413,045	4,770	2,96E-16
43,776	0,023	0,016	320532,172	1,674	0,016	319286,244	0,016	321177,401	4,794	2,69E-17
44,851	0,022	0,016	328404,734	1,744	0,015	326727,504	0,016	328590,409	4,733	
45,716	0,022	0,016	334739,199	1,805	0,015	333246,243	0,016	335292,441	4,724	1,88E-16
46,387	0,020	0,015	339650,137	1,846	0,015	338313,288	0,016	339216,169	4,667	0,00E+00
46,925	0,020	0,015	343590,007	1,886	0,015	342230,148	0,015	342759,085	4,710	0,00E+00
47,858	0.020	0,015	350423,560	1,956	0.015	348818,427	0,015	350483.967	4.670	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

4-Diciembre de 2013 (K _m =0,01)										
			Promedios		M	línimos	Máximos			
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
5,517	-0,321	0,012	39369,910	0,021	0,009	37677,216	0,016	39025,786	0,186	2,15E-16
9,209	-0,051	0,018	66057,300	0,085	0,016	64646,840	0,024	67634,023	2,034	
12,243	0,003	0,019	87890,863	0,155	0,017	86674,824	0,020	109437,581	2,979	
15,230	0,021	0,018	109245,930	0,237	0,017	107485,469	0,019	109499,792	3,518	
18,069	0,027	0,018	129609,154	0,327	0,017	128140,700	0,019	129455,830	3,841	3,23E-16
20,529	0,033	0,018	147635,307	0,418	0,017	146944,725	0,018	148183,415	4,166	
23,210	0,032	0,018	166921,579	0,525	0,017	165759,145	0,018	167069,017	4,308	3,76E-16
26,123	0,030	0,017	187864,708	0,651	0,017	186430,485	0,018	187816,587	4,380	8,60E-16
28,480	0,028	0,017	204815,141	0,762	0,017	203202,282	0,017	204730,152	4,405	
31,186	0,029	0,017	224855,788	0,902	0,016	223591,863	0,017	225420,769	4,563	1,08E-16
33,539	0,028	0,016	241821,053	1,030	0,016	239976,827	0,017	241790,100	4,603	
35,503	0,027	0,016	255983,941	1,143	0,016	254518,949	0,017	256723,502	4,636	
37,240	0,026	0,016	269204,947	1,247	0,016	268166,172	0,016	268498,714	4,661	1,08E-16
39,145	0,024	0,016	282974,630	1,363	0,016	281657,831	0,016	297441,550	4,644	4,56E-16
40,998	0,023	0,016	297132,749	1,479	0,016	295961,094	0,016	305965,376	4,615	
42,239	0,023	0,016	306122,377	1,566	0,016	303809,570	0,016	306201,022	4,689	8,09E-17
43,395	0,024	0,016	314506,076	1,652	0,016	306017,214	0,016	314741,568	4,812	2,42E-16
45,311	0,023	0,016	329234,768	1,782	0,015	315383,291	0,016	330487,871	4,767	2,96E-16
46,660	0,022	0,015	339035,871	1,879	0,015	337346,518	0,016	337433,093	4,764	2,69E-17
48,191	0,022	0,015	350163,784	1,998	0,015	346859,733	0,016	349403,497	4,841	

Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

5-Diciembre de 2013 (K _m =0,01)										
			Promedios		M	línimos	Μ	láximos		
Caudal (L/s)	k _s (mm)	f(-)	Re(-)	Delta Presión	f (-)	Re (-)	f (-)	Re (-)	a prom (-)	ks'(mm)
				(mca)						
5,927	-0,292	0,013	41316,252	0,025	0,002	39939,972	0,027	41488,629	0,356	2,15E-16
9,264	-0,067	0,018	64743,012	0,084	0,014	63342,998	0,023	65342,292	1,808	
12,990	-0,001	0,018	93008,959	0,171	0,017	91828,516	0,020	114551,748	2,878	
15,846	0,019	0,018	113664,072	0,253	0,017	112767,240	0,019	114517,050	3,479	
19,178	0,026	0,018	137921,299	0,364	0,017	135911,823	0,019	136997,313	3,838	3,23E-16
22,069	0,028	0,018	158710,165	0,474	0,016	156993,205	0,018	158586,741	4,066	
24,576	0,028	0,017	177198,877	0,577	0,016	174191,101	0,018	179303,017	4,173	3,76E-16
27,691	0,028	0,017	199660,546	0,721	0,016	195869,052	0,018	199957,257	4,335	8,60E-16
29,737	0,027	0,017	214966,528	0,821	0,016	212483,967	0,017	230824,332	4,388	
31,851	0,027	0,017	230835,823	0,934	0,016	229124,636	0,017	230543,675	4,511	1,08E-16
33,998	0,025	0,016	246400,902	1,049	0,016	245304,797	0,017	246771,751	4,470	
35,753	0,025	0,016	259117,641	1,152	0,016	258045,265	0,016	258840,225	4,551	
37,504	0,024	0,016	272509,247	1,256	0,016	271518,401	0,016	272148,712	4,563	1,08E-16
39,225	0,023	0,016	285014,101	1,364	0,016	283733,501	0,016	294938,914	4,591	4,56E-16
40,680	0,023	0,016	296341,193	1,458	0,016	294923,098	0,016	305861,405	4,634	
42,001	0,024	0,016	305966,417	1,550	0,016	304357,085	0,016	306407,987	4,719	8,09E-17
44,252	0,023	0,016	323188,805	1,705	0,015	321935,291	0,016	323781,425	4,757	2,42E-16
46,171	0,022	0,016	338070,559	1,840	0,015	324730,403	0,016	337951,264	4,762	2,96E-16
47,766	0,021	0,015	349747,632	1,953	0,015	348352,583	0,016	349737,541	4,714	2,69E-17
49,398	0,021	0,015	362626,439	2,083	0,015	361105,221	0,015	361875,884	4,819	

ANEXO II – RESULTADOS DIAGRAMA DE MOODY, ANÁLISIS DE RUGOSIDAD Y FACTOR "a"

IAMB 2013-20

RESULTADOS PARA COEFICIENTE DE PÉRDIDAS MENORES IGUAL A CERO (Km=0)

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA *Modelación de flujo turbulento hidráulicamente liso en tuberías largas de PVC*

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

Departamento de Ingeniería Civil y Ambiental

Universidad de los Andes

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** PVC

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** PVC

CIACUA

CIACUA

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

CIACUA

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

RESULTADOS PARA COEFICIENTE DE PÉRDIDAS MENORES IGUAL A 0.01 (Km=0.01)

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

Departamento de Ingeniería Civil y Ambiental

Universidad de los Andes

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** PVC

Universidad de los Andes Departamento de Ingeniería Civil y Ambiental

Centro de Investigaciones en Acueductos y Alcantarillados - CIACUA

()) Modelación de flujo turbulento hidráulicamente liso en tuberías largas de **Uniandes** ^{PVC}

