PROYECTO DE GRADO INGENIERÍA CIVIL

EFECTOS HIDRÁULICOS DE LA DISMINUCIÓN DE VISCOSIDAD EN LOS SISTEMAS DE OLEODUCTOS POR BOMBEO.

Daniel Mauricio Herrera Castillo.

Asesor: Juan Guillermo Saldarriaga Valderrama

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA CIVIL Y AMBIENTAL INGENIERÍA CIVIL BOGOTÁ D.C. 2013

AGRADECIMIENTOS

A mis padres y a mis profesores por enseñarme que en la vida se puede conseguir cualquier cosa, siempre que se quiera.

TABLA DE CONTENIDO

ÍNDICE DE FIGURASiii				
ÍND	ICE I	DE GI	RÁFICASir	v
ÍND	ICE I	DE TA	ABLASvi	ii
1	INT	ROD	UCCIÓN Y OBJETIVOS	1
1.	1	Intr	oducción	1
1.	2	Obje	etivos	2
	1.2.2	1	Objetivo general	2
	1.2.2	2	Objetivos específicos	2
2	MAI	RCO '	ГЕÓRICO	3
2.	1	Indu	ıstria petrolera	3
2.	2	Cru	dos y su clasificación	5
2.	3	Hidi	ráulica de un oleoducto	3
	2.3.2	1	Fluidos newtonianos	3
	2.3.2	2	Número de Reynolds	C
	2.3.3	3	Interacción flujo-pared sólida10	C
	2.3.4	4	Pérdidas por fricción1	1
	2.3.	5	Bombas en sistemas de tuberías13	3
	2.3.	6	Oleoducto como una tubería en serie	C
3 Emp	MOI PRES	DELA A OL	CIÓN HIDRÁULICA DE UN OLEODUCTO. MODELO HIDRÁULICO ESTABLE DE LA EODUCTO CENTRAL S.A. – OCENSA22	2
4	EFE	СТО	S DE LA DISMINUCIÓN DE VISCOSIDAD EN LAS BOMBAS24	4
5 GENERACIÓN Y CONTROL DE ALARMAS EN LOS SISTEMAS DE OLEODUCTOS POR BOMBEO				
5.	1	Tipo	os de alarmas en los sistemas de oleoductos por bombeo	7
5.	2	Con	trol de las alarmas de velocidad	Э
6	EFE 55	СТО	S DE LA INYECCIÓN DE DRA EN DIFERENTES CONFIGURACIONES DE BATCHEO	
7	CON	ICLU	SIONES Y RECOMENDACIONES	1
7.	1	Con	clusiones8	1
7.	2	Rec	omendaciones	2

8	REFERENCIAS	8	3
0		0	-

ÍNDICE DE FIGURAS

Figura 2-1. Infraestructura Petrolera de Colombia - Oleoductos. Fuente: (Ecopetrol, Redes de
transporte, 2012)
Figura 2-2. Desarrollo de una capa límite turbulenta mostrando la subcapa laminar viscosa.
Adaptada de: (Saldarriaga, 2007)11
Figura 2-3. Efectos de una bomba colocada en una tubería simple sobre la línea de energía
total (LET) y la línea de gradiente hidráulico (LGH). Fuente: (Saldarriaga, 2007)
Figura 2-4. Curvas de la bomba y de eficiencia de una bomba centrífuga. Fuente: (Best
Pumpworks, 2008)
Figura 2-5. Determinación del punto de operación de una bomba. Adaptada de: (Saldarriaga,
2007)

ÍNDICE DE GRÁFICAS

Gráfica 2-1. Producción de petróleo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP 2012)
Gráfica 2-2. Consumo de petróleo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP, 2012)
Gráfica 2-3. Producción vs Consumo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP, 2012)
Gráfica 2-4. Variación de la viscosidad con la temperatura para los crudos pesados Nowrooz (a) y Soroosh (b). Fuente: (Homayuni, Hamidi, & Vatani, 2012)
Gráfica 2-5. Variación de la viscosidad con respecto al esfuerzo cortante aplicado a diferentes temperaturas para un crudo pesado. Fuente: (Al-Bemani & Yaghi, 2002)
Gráfica 2-6. Curva del sistema para un sistema bomba-tubería. Fuente: (Saldarriaga, 2007) 17 Gráfica 4-1. Curvas de la bomba, de eficiencia y de potencia de la bomba principal de la
estación de bombeo Cusiana con crudo ligero Cusiana
estación de bombeo Cusiana con crudo pesado Castilla
99%)
Gráfica 5-2. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (condiciones de bombeo primera alternativa de control)
Gráfica 5-3. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (condiciones de bombeo resultantes)
Gráfica 5-4. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (viscosidad cinemática reducida en un
Gráfica 5-5. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (viscosidad cinemática reducida en un 99%, nuevas condiciones de bombeo)
Gráfica 6-1. Perfil de alturas piezométricas primeros 50 km del oleoducto con crudo Cusiana.
Gráfica 6-2. Perfil de alturas piezométricas primeros 100 km del oleoducto con crudo Cusiana.
Gráfica 6-3. Perfil de alturas piezométricas primeros 150 km del oleoducto con crudo Cusiana.
Gráfica 6-4. Perfil de alturas piezométricas primeros 200 km del oleoducto con crudo Cusiana.
Gráfica 6-5. Perfil de alturas piezométricas primeros 250 km del oleoducto con crudo Cusiana. 57

Gráfica 6-6. Perfil de alturas piezométricas primeros 300 km del oleoducto con crudo Cusiana	i. 7
Gráfica 6-7. Perfil de alturas piezométricas primeros 350 km del oleoducto con crudo Cusiana	, 1.
	8
Gráfica 6-8. Perfil de alturas piezométricas primeros 400 km del oleoducto con crudo Cusiana	ι. 8
Gráfica 6-9. Perfil de alturas piezométricas primeros 450 km del oleoducto con crudo Cusiana	ı. 8
Gráfica 6-10. Perfil de alturas piezométricas primeros 500 km del oleoducto con crudo Cusiana	9
Gráfica 6-11. Perfil de alturas piezométricas primeros 550 km del oleoducto con crudo Cusiana	9
Gráfica 6-12. Perfil de alturas piezométricas primeros 600 km del oleoducto con crudo Cusiana	9
Gráfica 6-13. Perfil de alturas piezométricas primeros 650 km del oleoducto con crudo Cusiana	0
Gráfica 6-14. Perfil de alturas piezométricas primeros 700 km del oleoducto con crudo Cusiana	0
Gráfica 6-15. Perfil de alturas piezométricas primeros 750 km del oleoducto con crudo Cusiana	0
Gráfica 6-16. Perfil de alturas piezométricas primeros 800 km del oleoducto con crudo Cusiana	1
Gráfica 6-17. Caudal en cada una de las estaciones de bombeo para cada configuración de	2
Gráfica 6-18. Velocidad de las bombas en cada una de las estaciones de bombeo para cada	Ζ
configuración de batcheo	3
Gráfica 6-19. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para cada configuración de batcheo	4
Gráfica 6-20. Caudal almacenado en cada una de las estaciones de bombeo para cada configuración de batcheo	5
Gráfica 6-21. Concentración de DRA inyectada en cada una de las estaciones de bombeo para cada configuración de batcheo	6
Gráfica 6-22. Perfil de alturas piezométricas primeros 50 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante)	ı 8
Gráfica 6-23. Perfil de alturas piezométricas primeros 100 km del oleoducto con crudo	0
Gráfica 6-24. Perfil de alturas piezométricas primeros 150 km del oleoducto con crudo	0
Cusiana (concentración de DRA inyectada constante)	9
Gráfica 6-25. Perfil de alturas piezométricas primeros 200 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	9
Gráfica 6-26. Perfil de alturas piezométricas primeros 250 km del oleoducto con crudo	_
Cusiana (concentración de DRA inyectada constante)	0

Gráfica 6-27. Perfil de alturas piezométricas primeros 300 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.70
Gráfica 6-28. Perfil de alturas piezométricas primeros 350 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.71
Gráfica 6-29. Perfil de alturas piezométricas primeros 400 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.71
Gráfica 6-30. Perfil de alturas piezométricas primeros 450 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.72
Gráfica 6-31. Perfil de alturas piezométricas primeros 500 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.72
Gráfica 6-32. Perfil de alturas piezométricas primeros 550 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.73
Gráfica 6-33. Perfil de alturas piezométricas primeros 600 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.73
Gráfica 6-34. Perfil de alturas piezométricas primeros 650 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.74
Gráfica 6-35. Perfil de alturas piezométricas primeros 700 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.74
Gráfica 6-36. Perfil de alturas piezométricas primeros 750 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.75
Gráfica 6-37. Perfil de alturas piezométricas primeros 800 km del oleoducto con crudo	
Cusiana (concentración de DRA inyectada constante)	.75
Gráfica 6-38. Caudal en cada una de las estaciones de bombeo para cada configuración de	
batcheo (concentración de DRA inyectada constante)	.76
Gráfica 6-39. Velocidad de las bombas en cada una de las estaciones de bombeo para cada	
configuración de batcheo (concentración de DRA inyectada constante)	.77
Gráfica 6-40. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para	
cada configuración de batcheo (concentración de DRA inyectada constante)	.78
Gráfica 6-41. Caudal almacenado en cada una de las estaciones de bombeo para cada	
configuración de batcheo (concentración de DRA inyectada constante)	.79

ÍNDICE DE TABLAS

Tabla 2-1. Composición en peso del crudo. Fuente de los datos: (Canadian Centre for Energy Information, 2002-2013)
Tabla 3-1. Equivalencia entre las unidades típicas de la industria petrolera y el SistemaInternacional de Unidades (SI).23
Tabla 4-1. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Cusiana.
Tabla 4-2. Curva de la bomba con agua, determinación de la velocidad rotacional de
operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Cusiana
Tabla 4-3. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Castilla.
Tabla 4-4. Curva de la bomba con agua, determinación de la velocidad rotacional de operación
de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla
Tabla 4-5. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Castilla (viscosidad cinemática reducida en un 99%)
Tabla 4-6. Curva de la bomba con agua, determinación de la velocidad rotacional de operación
de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba
cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%)
Tabla 5-1. Información general de las condiciones de bombeo. 39
Tabla 5-2. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo
Castilla
Tabla 5-3. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba
cuando se bombea crudo Castilla (bomba booster El Porvenir)40
Tabla 5-4. Información general de las nuevas condiciones de bombeo (primera alternativa de
Tabla 5-5. Curva de la homba con agua determinación de la velocidad rotacional de operación
de la bomba y correcciones por viscosidad y velocidad rotacional de operación de la bomba
cuando se hombea crudo Castilla (condiciones de hombeo primera alternativa de control)42
Tabla 5-6. Información general de las nuevas condiciones de bombeo (segunda alternativa de control). 44
Tabla 5-7. Curva de la bomba con agua, determinación de la velocidad rotacional de operación
de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba
cuando se bombea crudo Castilla (condiciones de bombeo segunda alternativa de control)45
Tabla 5-8. Información general de las condiciones de bombeo resultantes. 45
Tabla 5-9. Curva de la bomba con agua, determinación de la velocidad rotacional de operación
de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba
cuando se bombea crudo Castilla (condiciones de bombeo resultantes)
Tabla 5-10. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo
Castilla (viscosidad cinemática reducida en un 99%)

Tabla 5-11. Curva de la bomba con agua, determinación de la velocidad rotacional de	
operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación	de
la bomba cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%)	49
Tabla 5-12. Información general de las nuevas condiciones de bombeo	51
Tabla 5-13. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo	
Castilla (viscosidad cinemática reducida en un 99%, nuevas condiciones de bombeo)	51
Tabla 5-14. Curva de la bomba con agua, determinación de la velocidad rotacional de	
operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación	de
la bomba cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%,	
nuevas condiciones de bombeo)	52
Tabla 6-1. Caudal en cada una de las estaciones de bombeo para cada configuración de	
batcheo	61
Tabla 6-2. Velocidad de las bombas en cada una de las estaciones de bombeo para cada	
configuración de batcheo	62
Tabla 6-3. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para ca	da
configuración de batcheo.	63
Tabla 6-4. Caudal almacenado en cada una de las estaciones de bombeo para cada	
configuración de batcheo.	64
Tabla 6-5. Concentración de DRA inyectada en cada una de las estaciones de bombeo para	
cada configuración de batcheo	65
Tabla 6-6. Caudal en cada una de las estaciones de bombeo para cada configuración de	
batcheo (concentración de DRA inyectada constante).	76
Tabla 6-7. Velocidad de las bombas en cada una de las estaciones de bombeo para cada	
configuración de batcheo (concentración de DRA inyectada constante)	77
Tabla 6-8. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para ca	da
configuración de batcheo (concentración de DRA inyectada constante)	78
Tabla 6-9. Caudal almacenado en cada una de las estaciones de bombeo para cada	
configuración de batcheo (concentración de DRA inyectada constante)	79

1 INTRODUCCIÓN Y OBJETIVOS

1.1 Introducción

En la actualidad, el transporte de crudo pesado en Colombia se realiza por tierra mediante tractomulas y carrotanques, afectando directamente a la producción y generando un impacto económico importante, principalmente en la inversión extranjera. Por esta razón, surgen como alternativa de transporte de crudo pesado los sistemas de oleoductos por bombeo.

Últimamente, se ha visto que solamente las grandes empresas productoras, como Ecopetrol y Repsol, pueden utilizar los sistemas de oleoductos por bombeo para transportar el crudo, ya que estas empresas son las dueñas de la infraestructura y ostentan los recursos necesarios para el bombeo (Redacción Llano 7 Días, 2012). Siendo el cuarto país en la lista de productores de crudo en América Latina, es de vital importancia investigar cómo se podría facilitar el bombeo del crudo pesado en estos sistemas, de tal forma que la infraestructura sea un servicio a disposición de los productores del país.

Adicionalmente, se debe tener en cuenta que el crudo pesado es un fluido de alta viscosidad, por lo cual resulta inminente la disminución de su viscosidad si se pretende hacer uso de los sistemas de oleoductos por bombeo. Si no se realiza este proceso, es posible que el crudo no pueda ser transportado o que esta alternativa no pueda ser utilizada por los costos energéticos elevados que generaría el bombeo.

Uno de los métodos que se ha venido utilizando en la industria petrolera para disminuir la viscosidad del crudo pesado, es la utilización de unas sustancias poliméricas denominadas agentes reductores de arrastre (DRA, por su nombre en inglés Drag Reduction Agents). Estos agentes reductores de arrastre son inyectados a los sistemas de oleoductos por bombeo con el propósito de mitigar la turbulencia producida por las pérdidas por fricción.

En este proyecto de grado se evaluarán los efectos hidráulicos generados por esta disminución de la viscosidad cinemática del crudo en los sistemas de oleoductos por bombeo. En primera instancia, se orientará el estudio de estos efectos a las bombas empleadas en las estaciones de bombeo del oleoducto Cusiana – La Belleza – Vasconia – Coveñas de la empresa OLEODUCTO CENTRAL S.A. – OCENSA, a través de un software de simulación especializado en este tipo de sistemas denominado *Modelo Estable y Extendido*, el cual simula la operación del oleoducto mencionado.

El estudio continúa con una investigación sobre el tipo de alarmas que se generan en un oleoducto, y como se relacionan estas con la disminución de viscosidad. De igual forma, se presentarán unas alternativas de control para las alarmas de velocidad.

Por último, se indagará acerca del efecto que tiene la inyección de DRA en diferentes configuraciones de batcheo.

1.2 Objetivos

1.2.1 Objetivo general

El objetivo general del proyecto de grado es estudiar los principales efectos hidráulicos que se presentan en los sistemas de oleoductos por bombeo, generados por la disminución de viscosidad del crudo transportado a partir de la utilización de agentes reductores de arrastre.

1.2.2 Objetivos específicos

Con el fin de lograr el objetivo general del proyecto de grado, se determinan los siguientes objetivos específicos:

- Realizar una contextualización de la problemática del transporte de crudos pesados en Colombia.
- Asociar los conceptos teóricos de la hidráulica de tuberías al funcionamiento de un oleoducto.
- Utilizar un software que permita realizar la modelación hidráulica de un oleoducto en estado estable.
- Entender las diferencias hidráulicas que se presentan al transportar un crudo pesado con respecto al transporte de agua potable presurizada, analizando el comportamiento de las curvas de la bomba, eficiencia y potencia de cada una de las bombas empleadas en las estaciones de bombeo del oleoducto Cusiana La Belleza Vasconia Coveñas, perteneciente a la empresa OLEODUCTO CENTRAL S.A. OCENSA.
- Comprender el proceso de generación de alarmas de caudal, velocidad y potencia en las estaciones de bombeo, y relacionar las alarmas con la operación apropiada del oleoducto.
- Proporcionar tres alternativas de control para las alarmas de velocidad, y observar como varía el proceder de dos de estas alternativas con la viscosidad cinemática del crudo que se está transportando.
- Establecer una relación entre la configuración del batcheo y la inyección de agentes reductores de arrastre, con el fin de determinar el efecto de ambas en la capacidad de bombeo del oleoducto.

2 MARCO TEÓRICO

2.1 Industria petrolera

En la actualidad, el petróleo se ha instituido como el principal generador de renta externa, posicionándose por encima incluso del café, producto nacional predilecto de exportación (García, 2002). Resulta entonces indiscutible que el petróleo se ha transformado en el principal propulsor del desarrollo de la economía colombiana, ubicando a Colombia en la cuarta posición de la lista de productores de petróleo en América Latina, después de México, Venezuela y Brasil. En la Gráfica 2-1 se puede observar que, aunque la producción de petróleo en América Latina sufrió un declive en el 2005, Colombia siguió aumentando su producción pasando de 0.554 millones de barriles de petróleo diarios en 2005, a 0.930 millones de barriles de petróleo diarios en 2011. Adicionalmente, Colombia logró tener en el 2011 el mayor porcentaje de crecimiento en producción de petróleo con respecto al año anterior de América Latina, con un 16,3% (BP, 2012).

Gráfica 2-1. Producción de petróleo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP, 2012).

Por otro lado, en la Gráfica 2-2 se puede observar que a pesar del fuerte incremento del consumo de petróleo que se dio en Colombia en el 2010, a cifras del 2011 se están consumiendo solamente 0.253 millones de barriles de petróleo diarios, cifra inferior al 30% de la producción diaria de petróleo del país. Esta falta de consumo se justifica claramente teniendo en cuenta los dos fines principales que se le da a cada barril de petróleo en Colombia: la exportación y el refinamiento.

Gráfica 2-2. Consumo de petróleo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP, 2012).

La exportación de petróleo en el país se realiza a través del Terminal Marítimo de Coveñas, localizado en el departamento de Sucre y designado como el principal puerto de movimiento de hidrocarburos de Colombia. El Terminal Marítimo de Coveñas es alimentado por tres de oleoductos: Oleoducto Caño Limón Coveñas, Oleoducto de Colombia (ODC) y el Oleoducto Central (OCENSA) (Ecopetrol, Coveñas, 2012).

En el caso del refinamiento, el petróleo crudo extraído es transportado al Complejo Industrial de Barrancabermeja, localizado en el departamento de Santander, donde se refina para producir gasolina motor (corriente y extra), bencina, cocinol, diésel, queroseno, entre otros (Ecopetrol, Refinación, 2012).

Para cumplir a cabalidad con estos fines, Colombia cuenta con la siguiente red de oleoductos:

Figura 2-1. Infraestructura Petrolera de Colombia - Oleoductos. Fuente: (Ecopetrol, Redes de transporte, 2012).

Al realizar una comparación entre la Gráfica 2-1 y la Gráfica 2-2, es claro que en años futuros la producción no alcanzará a suplir la demanda de energía. Esto se evidencia claramente en la Gráfica 2-3:

Gráfica 2-3. Producción vs Consumo en América Latina desde el 2001 hasta el 2011. Fuente de los datos: (BP, 2012).

Frente a esto surge la necesidad de activar todas las fuentes de energía disponibles, siendo la explotación de crudos pesados una de las más aprovechables. El papel que desempeña América Latina en este nuevo enfoque de la industria petrolera resulta fundamental, ya que dispone del 48% de las reservas recuperables de crudos pesados en el mundo. Asimismo, Colombia se ubica actualmente como el quinto país dentro de la región con mayor potencial para la explotación de estos recursos energéticos y se estima que el 45% de su producción de petróleo corresponde a crudos pesados (Colombia Energía, 2013).

2.2 Crudos y su clasificación

El petróleo, en términos generales, se define como una combinación entre hidrocarburos (compuestos orgánicos formados a partir de átomos de carbono e hidrógeno) en fase sólida, líquida o gaseosa, con ciertos elementos químicos (principalmente azufre, nitrógeno y oxígeno).

El petróleo se origina mediante la descomposición de materia orgánica depositada entre las capas de formaciones sedimentarias. Esta descomposición es causada por la exposición de la materia orgánica a las condiciones de temperatura y presión (las cuales varían según la profundidad) de la formación geológica donde se encuentra, permitiendo así la producción y retención de los hidrocarburos que forman las reservas de petróleo (Galp Energia, SGPS, S.A., 2010).

Por otro lado, se define el crudo como petróleo en condiciones de yacimiento. El crudo en sí no tiene un valor económico alto en el mercado pero como se mencionó anteriormente, a través de un proceso de refinación, se pueden adquirir de él productos de gran valor comercial como la gasolina. Aunque la composición del crudo varía según su origen geológico, se tienen los siguientes rangos típicos para la composición en peso de este:

Tabla 2-1. Composición en peso del crudo. Fuente de los datos: (Canadian Centre for Energy Information, 2002-2013).

Elemento químico	%peso
Carbono (C)	83%-87%
Hidrógeno (H)	10%-14%
Azufre (S)	Hasta 6%
Nitrógeno (N)	Hasta 2%
Oxígeno (O)	Hasta 1,5%
Metales	Menos de 1000 ppm

El crudo se clasifica de tres formas distintas. La primera de estas es la distinción que se hace entre un crudo convencional y un crudo no convencional. Un crudo se considera como crudo convencional cuando fluye naturalmente o puede ser bombeado sin necesidad de ser calentado o diluido (Canadian Centre for Energy Information, 2002-2013). De lo contrario, se considera como crudo no convencional.

La segunda clasificación es la diferenciación entre un crudo dulce y un crudo amargo. Un crudo dulce es aquel que tiene un contenido de azufre menor al 0,5%, mientras que un crudo amargo es aquel que tiene un contenido de azufre mayor al 1%. La relevancia de esta segunda clasificación radica en los tipos de productos que se pueden obtener de estos. El crudo dulce es procesado para obtener gasolina, keroseno y diésel de alta calidad, mientras que el crudo amargo, por su alto contenido de impureza (contenido de azufre) es procesado para obtener diésel y combustible.

La tercera y última clasificación del crudo, es la categorización de los crudos en ligeros, medianos, pesados y extrapesados, según su gravedad API. La gravedad API es una medida de densidad establecida por el Instituto Americano del Petróleo (API, por su nombre en inglés American Petroleum Institute), que especifica que tan liviano o pesado es un crudo con respecto al agua. La gravedad API de un crudo se mide en grados y se determina con la siguiente ecuación:

$$^{\circ}API = \frac{145,5}{G_s(60^{\circ}F)} - 131,5$$

Ecuación 2-1. Gravedad API.

donde:

 $G_s(60^{\circ}F)$: gravedad específica medida a 60°F en condiciones estandarizadas.

Como se mencionó anteriormente, los crudos se clasifican según su gravedad API de la siguiente manera:

- Crudos ligeros: °API>31,1°
- Crudos medianos: 22,3°<°API<31,1°
- Crudos pesados: 10°<°API<22,3°
- Crudos extrapesados: °API<10°

Esta última clasificación del crudo es la más importante en el transporte de crudo mediante sistemas de oleoductos por bombeo, ya que una gravedad API alta implica que el crudo puede llegar a ser más liviano que el agua (como en el caso de los crudos ligeros), facilitando así su transporte, mientras que una gravedad API baja implica que el crudo puede llegar a ser o es más pesado que el agua (como en el caso de los crudos pesados y extrapesados, respectivamente). Asimismo, los crudos con gravedades API bajas presentan mayores viscosidades y mayores contenidos de azufre, nitrógeno y metales.

2.3 Hidráulica de un oleoducto

De manera general, el transporte de crudo en los sistemas de oleoductos por bombeo está gobernado por las mismas leyes físicas que el transporte de agua potable presurizada. Dado a que las ecuaciones para el cálculo y diseño de sistemas hidráulicos son físicamente basadas, estas siguen siendo válidas independientemente del fluido con el que se esté trabajando. A continuación, se presentan algunos conceptos hidráulicos fundamentales de un sistema de oleoducto por bombeo.

2.3.1 Fluidos newtonianos

Una exigencia para utilizar las ecuaciones anteriormente mencionadas, es que el fluido que se esté transportando, sea un fluido newtoniano. Un fluido se define como una sustancia que no puede resistir esfuerzo cortante. Ante la existencia de un esfuerzo cortante, el fluido se deforma gradualmente mientras el esfuerzo este presente. La resistencia u oposición del fluido a esta deformación se denomina viscosidad, y es una propiedad física de cada fluido (Saldarriaga, 2007).

Un fluido newtoniano es aquel que se rige bajo la ley de viscosidad de Newton. La ley de viscosidad de Newton establece que el esfuerzo cortante (τ) es proporcional a la tasa de deformación del fluido, teniendo como constante de proporcionalidad la viscosidad dinámica del fluido (μ).

$$\tau = \mu \frac{dv_x}{dy}$$

Ecuación 2-2. Ley de viscosidad de Newton.

donde:

 μ : viscosidad dinámica del fluido.

 $\frac{dv_x}{dy}$: gradiente de velocidad (tasa de deformación del fluido).

Así, un fluido newtoniano se define como aquel fluido que mantiene constante su viscosidad, sin importar la magnitud del esfuerzo cortante que se le está aplicando.

El petróleo en sí se define como un fluido no newtoniano, es decir, aquel para el cual la viscosidad dinámica es función de la temperatura y el esfuerzo cortante que se le está aplicando. Cuando se transporta un crudo en un sistema de oleoducto por bombeo, la magnitud del

esfuerzo cortante al que se encuentra sometido el crudo, no tiene un efecto significativo sobre la viscosidad de esta. Sin embargo, la viscosidad del crudo sí varía de forma significativa con la temperatura. Un aumento en la temperatura del crudo implica una disminución en la viscosidad del crudo, pero a su vez, hace que este se comporte como un fluido newtoniano. Las siguientes dos gráficas justifican ambas afirmaciones:

Gráfica 2-4. Variación de la viscosidad con la temperatura para los crudos pesados Nowrooz (a) y Soroosh (b). Fuente: (Homayuni, Hamidi, & Vatani, 2012).

Gráfica 2-5. Variación de la viscosidad con respecto al esfuerzo cortante aplicado a diferentes temperaturas para un crudo pesado. Fuente: (Al-Bemani & Yaghi, 2002).

2.3.2 Número de Reynolds

En un flujo, cuando no hay interacción entre dos o más fluidos (no existen fuerzas de tensión superficial), y se tienen velocidades sustancialmente inferiores a la del sonido (fuerzas de compresibilidad pequeñas), el movimiento de las partículas es regido por tres fuerzas: las fuerzas de presión, las fuerzas viscosas y las fuerzas inerciales. Si se estableciera un triángulo de fuerzas, la suma vectorial de las fuerzas de presión y las fuerzas viscosas dan como resultado las fuerzas inerciales (Saldarriaga, 2007). Teniendo en cuenta los conceptos de similitud dinámica para dos sistemas de diferente tamaño con las mismas condiciones de velocidad y geometría, y estableciendo una relación entre las fuerzas viscosas y las fuerzas de presión, se llega a un número adimensional conocido como el número de Reynolds:

$$Re = rac{vd
ho}{\mu} = rac{vd}{v}$$
 Ecuación 2-3. Número de Reynolds.

donde:

v: velocidad media del flujo en la tubería.

d: diámetro de la tubería.

 ρ : densidad del fluido.

v: viscosidad cinemática del fluido.

El número de Reynolds permite caracterizar el tipo de flujo en tuberías, estableciendo los rangos para los cuales se tendrá flujo laminar, flujo transicional o flujo turbulento de la siguiente manera:

- Re<2200: flujo laminar.
- 2200<Re<4500: flujo transicional.
- Re>4500: flujo turbulento.

A diferencia de los sistemas en los que se maneja agua potable presurizada, los cuales se caracterizan por tener números de Reynolds altos y, por ende, flujos altamente turbulentos, los sistemas de oleoductos por bombeo se caracterizan por tener números de Reynolds bajos, por lo cual se tienen generalmente flujos laminares o transicionales. La razón de esto radica en la diferencia de viscosidad del agua y del crudo, siendo esta última significativamente superior para cualquier temperatura.

2.3.3 Interacción flujo-pared sólida

Teniendo en cuenta el concepto de longitud de mezcla introducido por Ludwig Prandtl en 1925 y el esfuerzo turbulento de Reynolds, se establece el siguiente concepto para explicar la interacción que hay entre el flujo y la pared sólida que lo rodea:

$$\tau_{yx_T} = \rho l \left(\frac{\delta v_x}{\delta y} \right)^2$$

Ecuación 2-4. Esfuerzo cortante turbulento.

donde:

 ρ : densidad del fluido.

l: longitud de mezcla.

 $\frac{\delta v_x}{\delta v}$: gradiente de velocidad.

El concepto de longitud de mezcla (primer concepto de la mecánica de fluidos moderna) y el concepto de interacción flujo-pared sólida (segundo concepto de la mecánica de fluidos moderna), le permitieron a Prandtl introducir una teoría que establece que siempre que un fluido en movimiento interactúe con una pared sólida, el esfuerzo cortante que se genera afecta a una zona del flujo conocida como capa límite, la cual puede ser laminar o turbulenta (Saldarriaga, 2007). En esta capa, la velocidad en el punto de contacto del flujo con la pared sólida es igual a cero y la distribución de velocidades cambia por la existencia de la pared.

Para flujo turbulento, a medida que las moléculas se acercan a la pared sólida, estas reducen las direcciones de vibración generando un flujo laminar cerca a la pared. Esta zona se conoce como subcapa laminar viscosa y se ilustra en la siguiente figura:

Figura 2-2. Desarrollo de una capa límite turbulenta mostrando la subcapa laminar viscosa. Adaptada de: (Saldarriaga, 2007).

El concepto de interacción flujo-pared sólida es esencial para entender el accionar hidráulico de los agentes reductores de arrastre, ya que según su naturaleza, estos operarán en alguna de las zonas descritas anteriormente.

2.3.4 Pérdidas por fricción

Como su nombre lo indica, las pérdidas por fricción corresponden a las pérdidas de altura de presión debidas a la fricción fluida sobre la pared de la tubería y a los efectos de viscosidad del fluido (Saldarriaga, 2007). El cálculo de estas pérdidas se realiza de manera directa con la ecuación de Darcy Weisbach:

Ecuación 2-5. Darcy Weisbach.

$$h_f = f \frac{l}{d} \frac{v^2}{2g}$$

donde:

f : factor de fricción de Darcy.

Daniel M. Herrera C.

l: longitud de la tubería.

d: diámetro de la tubería.

v: velocidad media del flujo en la tubería.

El factor de fricción de Darcy es el responsable de las pérdidas por fricción, y puede ser determinado a partir de la ecuación de Colebrook-White. Esta ecuación es físicamente basada y relaciona el factor de fricción como función de la rugosidad relativa de la tubería (k_s/d) y el número de Reynolds de manera implícita:

Ecuación 2-6. Ecuación de Colebrook-White.

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{k_s}{3.7d} + \frac{2.51}{Re\sqrt{f}}\right)$$

donde:

f : factor de fricción de Darcy.

 k_s : rugosidad absoluta de la tubería.

d: diámetro de la tubería.

Re: número de Reynolds.

Utilizando las ecuaciones de Darcy Weisbach y de Colebrook-White, se puede encontrar una ecuación explícita para el caudal en una tubería simple:

$$Q = \frac{\pi d^2}{4} \left[\frac{-2\sqrt{2gdh_f}}{\sqrt{l}} \log_{10} \left(\frac{k_s}{3.7d} + \frac{2.51\nu\sqrt{l}}{d\sqrt{2gdh_f}} \right) \right]$$
 Ecuación 2-7. Caudal en una tubería simple.

donde:

d: diámetro de la tubería.

*h*_{*f*}: pérdidas por fricción.

l: longitud de la tubería.

 k_s : rugosidad absoluta de la tubería.

 ν : viscosidad cinemática del fluido.

Como se puede observar en la Ecuación 2-7, tanto las pérdidas por fricción, como la viscosidad del fluido, afectan directamente al caudal que puede ser transportado en una tubería.

Los agentes reductores de arrastre tienen como finalidad reducir las pérdidas por fricción por lo cual, al mantener en la Ecuación 2-7 un valor constante para el diámetro de la tubería, la

longitud de la tubería y la rugosidad absoluta de la tubería, sería posible transportar más caudal cuando estos son inyectados en los sistemas de oleoductos por bombeo.

2.3.5 Bombas en sistemas de tuberías

En esta sección se presentarán los efectos hidráulicos que producen las bombas en una tubería simple. Asimismo, se realizará una descripción breve de las bombas centrífugas, teniendo en cuenta que este tipo de bombas rotodinámicas son utilizadas actualmente en los sistemas de oleoductos por bombeo para impulsar el crudo.

2.3.5.1 Bombas centrífugas

Las bombas rotodinámicas son aquellas en las que se suministra energía cinética de rotación al fluido que se bombea mediante un impulsor (rotor), con el fin de transformar esta energía en energía de presión, enclaustrando el fluido en la voluta o carcasa de la bomba mientras avanza a lo largo de ésta.

De manera general, las bombas rotodinámicas se clasifican de acuerdo con la forma de sus impulsores en tres tipos: bombas centrífugas, bombas de flujo axial o bombas de flujo mixto. Las bombas centrífugas se caracterizan por tener un flujo radial, es decir, el fluido entra a la bomba en forma axial (paralela al eje de la bomba) pero sale impulsado en dirección radial (perpendicular al eje de la bomba). Asimismo, estas bombas presentan una presión relativamente alta con un caudal bajo (Saldarriaga, 2007).

Adicionalmente, las bombas rotodinámicas se definen de manera más explícita a través de un parámetro adimensional conocido como velocidad específica (Ns), el cual se puede interpretar como la velocidad en revoluciones por minuto para la cual modelos geométricamente similares a prototipos de las diferentes clases de bombas operarían para mover un caudal unitario cuando se genera una altura piezométrica unitaria (Saldarriaga, 2007). Este parámetro es simplemente un indicador para determinar qué bomba rotodinámica y, por ende, qué dirección de flujo se tiene. La expresión de la velocidad específica de una bomba rotodinámica puede ser hallada a través de un análisis dimensional, teniendo en cuenta el concepto de similitud dinámica de la mecánica de fluidos. La expresión resultante de este proceso es:

$$Ns = \frac{N\sqrt{Q}}{H^{3/4}}$$
 Ecuación 2-8. Velocidad específica de una bomba rotodinámica.

donde:

Q: caudal en galones americanos por minuto (gpm).

H: altura piezométrica total de la bomba en pies (ft).

N: velocidad rotacional de la bomba en revoluciones por minuto (rpm).

Para las bombas centrífugas se tienen generalmente valores de velocidad específica entre 500 y 2000.

Por último, las bombas centrífugas pueden ser de etapa simple o multietapa. En los sistemas de oleoductos por bombeo se utilizan generalmente bombas centrífugas multietapa, debido a que las bombas que se emplean en las estaciones de bombeo, deben tener una velocidad considerablemente mayores a las obtenibles con una bomba centrífuga de etapa simple para añadir la energía por unidad de peso (altura piezométrica de presión) necesaria.

El número de etapas de una bomba centrífuga es directamente proporcional al número de impulsores de esta, por lo cual una bomba centrífuga de dos o más impulsores, es considerada una bomba centrífuga multietapa. A diferencia de las bombas centrífugas de etapa simple, donde el impulsor de la bomba se encuentra instalado en un solo eje de giro, las bombas centrífugas multietapa pueden tener varios ejes de giro, por lo cual se tiene la posibilidad de instalar los impulsores en un mismo eje de giro o ejes de giro diferentes.

2.3.5.2 Línea de gradiente hidráulico en sistemas bomba-tubería

Como se mencionó anteriormente, el propósito de las bombas rotodinámicas es convertir energía cinética de rotación en energía de presión. Como consecuencia de esta conversión, se adiciona energía por unidad de peso (altura piezométrica de presión) al flujo. En un sistema bomba-tubería, este aumento de energía es detectado por los manómetros aguas arriba y aguas abajo de la bomba, elevando la línea de energía total (LET) y la línea piezométrica del flujo o línea de gradiente hidráulico (LGH) y, por consiguiente, afectando la forma y la pendiente de estas dos líneas (Saldarriaga, 2007). En la Figura 2-3 se ilustra de manera gráfica como se ven afectadas ambas líneas por la presencia de la bomba:

Figura 2-3. Efectos de una bomba colocada en una tubería simple sobre la línea de energía total (LET) y la línea de gradiente hidráulico (LGH). Fuente: (Saldarriaga, 2007).

Este concepto es supremamente importante en los sistemas de oleoductos por bombeo, debido a que se la línea de gradiente hidráulico debe estar siempre por encima de la línea del perfil del suelo (denominada Slack Line) y por debajo de la presión máxima de operación permitida (MAOP, por su nombre en inglés Maximum Allowable Operating Pressure), con el fin de asegurar condiciones de operación normales en el sistema.

2.3.5.3 Curvas de un sistema bomba tubería

Las curvas de un sistema bomba tubería son tres: curva de la bomba, curva de eficiencia y curva del sistema. Las curvas de la bomba y de eficiencia son suministradas por los fabricantes de las bombas o son obtenidas en laboratorio, y generalmente son construidas cuando el fluido que se bombea es agua. Por otro lado, la curva del sistema puede ser construida por el diseñador mediante la escogencia de diferentes valores de altura piezométrica total generada por la bomba (Hm), teniendo en cuenta la ecuación de conservación de energía.

Las curvas de la bomba son curvas de caudal contra altura piezométrica total (Saldarriaga, 2007). Por lo general, para una bomba centrífuga, la altura piezométrica total se puede expresar como una función cuadrática del caudal de la siguiente manera:

$$H_m = AQ^2 + BQ + C$$
 Ecuación 2-9. Altura piezométrica manométrica como función del caudal para bombas centrífugas.

donde:

Q: caudal bombeado.

Teniendo en cuenta que para n+1 puntos existe solamente un polinomio de grado n que pasa a través de todos ellos, los coeficientes A, B y C pueden ser determinados escogiendo tres puntos de caudal y altura piezométrica total de la curva suministrada por el fabricante. Esta simplificación fue utilizada en el modelo hidráulico estable de la empresa OLEODUCTO CENTRAL S.A – OCENSA, ya que permite simular bombas centrífugas en sistemas complejos de tuberías, tales como los sistemas de oleoductos por bombeo.

Las curvas de eficiencia, como su nombre lo indica, son curvas de caudal contra eficiencia de la bomba. Cada sistema de tuberías, para un caudal de diseño, tiene una eficiencia máxima de la bomba. Para un caudal determinado, con una altura piezométrica manométrica y una eficiencia conjunta bomba-motor (η) determinada, se puede obtener la potencia consumida por la bomba de la siguiente manera:

$$P = \frac{1}{\eta} \rho Q g H_m$$

 g_{m}

donde:

 $\eta:$ eficiencia conjunta bomba-motor.

 ρ : densidad del fluido.

Q: caudal bombeado.

 H_m : altura piezométrica manométrica.

Ecuación 2-10. Potencia consumida por una bomba

A continuación, se presentan curvas de la bomba y de eficiencia para una bomba centrífuga del fabricante Ingersoll-Rand.

Figura 2-4. Curvas de la bomba y de eficiencia de una bomba centrífuga. Fuente: (Best Pumpworks, 2008).

Como se puede observar en la Figura 2-4, cada diámetro de impulsor disponible para el modelo de la bomba centrífuga en cuestión, tiene una curva de la bomba. Adicionalmente, se pueden observar las curvas de igual eficiencia, que son aquellas que intersectan a las curvas de la bomba, y cuál es el punto de máxima eficiencia, que en este caso corresponde a un caudal de 3800 gpm con una altura piezométrica total (por etapa de la bomba) de 700 ft y un impulsor de 13,78 in de diámetro (obteniendo una eficiencia máxima de la bomba de 84,5%).

Por último, se tienen las curvas del sistema. Al igual que las curvas de la bomba, las curvas del sistema son curvas de caudal contra altura piezométrica total. Como se mencionó anteriormente, estas curvas pueden ser construidas por el diseñador teniendo en cuenta la ecuación de Bernoulli y la ecuación de Darcy Weisbach para calcular las pérdidas por fricción. La ecuación que permite construir las curvas del sistema es la siguiente:

Proyecto de Grado

$$H_m = H_T + \left(\sum f_i \frac{l_i}{d_i} + \sum k_{m_i}\right) \frac{Q^2}{2gA^2}$$

donde:

f : factor de fricción de Darcy.

l: longitud de la tubería.

d: diámetro de la tubería.

Daniel M. Herrera C.

bomba-tubería.

Ecuación 2-11. Conservación de la energía para sistemas

- *Q*: caudal bombeado.
- A: área de la sección transversal de la tubería.
- k_m : coeficiente de pérdidas menores.
- H_T : altura topográfica que debe ser vencida por la bomba.
- *i*: subíndice de la tubería.

Como se puede observar en la Ecuación 2-11, la curva del sistema dependerá de las características físicas de la tubería, como la longitud, el diámetro, los accesorios y la rugosidad absoluta de esta (Saldarriaga, 2007). A continuación se presenta una curva del sistema para un sistema bomba-tubería:

Gráfica 2-6. Curva del sistema para un sistema bomba-tubería. Fuente: (Saldarriaga, 2007).

La importancia de estas curvas radica en la determinación del punto de operación de la bomba, que corresponde al caudal que está siendo enviado y la altura dinámica suministrada por la bomba (Saldarriaga, 2007). Teniendo la curva de la bomba y la curva del sistema, se establece el punto de operación de la bomba como aquel en el cual estas dos curvas se intersectan. Además, si se tiene la curva de eficiencia, se determina también la eficiencia de este punto. La determinación del punto de operación se ilustra gráficamente en la siguiente figura:

Figura 2-5. Determinación del punto de operación de una bomba. Adaptada de: (Saldarriaga, 2007).

A lo largo de este proyecto, se trabajará con las curvas de la bomba y de eficiencia de cada una de las bombas centrífugas empleadas en las estaciones de bombeo del oleoducto Cusiana – La Belleza – Vasconia – Coveñas. De igual forma, se mostrará cómo se modifican estas curvas cuando el fluido que debe ser bombeado es crudo ligero o pesado.

2.3.5.4 Limitaciones en la altura de succión

Para impedir que se tengan valores de presión menores a la presión atmosférica en las paletas del impulsor de una bomba centrífuga o en la tubería de succión y, por consiguiente, evitar la ocurrencia del fenómeno de cavitación, es necesario que la presión a la entrada de la bomba sea menor que cierto límite. Este límite se establece a partir de un término conocido como la altura neta de succión positiva (NPSH, por su nombre en inglés, Net Positive Suction Head), el cual representa la altura (energía potencial de presión por unidad de peso) absoluta a la entrada por encima de la presión de vapor (Saldarriaga, 2007). La NPSH está definida entonces de la siguiente manera:

$$NPSH = \frac{P_s - P_v}{\rho g} = \frac{P_a}{\rho g} - H_s - \frac{P_v}{\rho g}$$

Ecuación 2-12. Altura neta de succión positiva.

donde:

 ρ : densidad del fluido.

P_s: presión de succión.

 P_{v} : presión de vapor.

 P_a : presión atmosférica absoluta.

H_s: altura de succión.

Como se observa en la Figura 2-4, la NPSH es un dato que es suministrado por el fabricante. Si no es suministrado, al igual que las curvas de la bomba y de eficiencia, puede obtenerse en el laboratorio.

Ecuación 2-13. Altura de succión.

De igual manera, la altura de succión está definida de la siguiente manera:

$$H_{s} = h_{s} + h_{f_{s}} + \frac{v_{s}^{2}}{2g} + h_{m_{e}}$$

donde:

 h_s : altura de la bomba con respecto al nivel del fluido en el tanque donde se está succionando caudal.

 h_{f_s} : pérdidas por fricción en la tubería de succión.

 v_s : velocidad en la tubería de succión.

 h_{m_e} : pérdidas menores causadas a la entrada de la tubería de succión.

Teniendo en cuenta la Ecuación 2-12 y la Ecuación 2-13, se puede entonces hallar a qué altura se debe colocar la bomba con respecto al nivel del fluido en el tanque donde se está succionando caudal (h_s), con el fin de evitar la ocurrencia del fenómeno de cavitación en la bomba y en la tubería de succión.

En los sistemas de oleoductos por bombeo, se tiene en cuenta también una altura neta de succión positiva conocida como NPSH3. La NPSH3 es una característica de las bombas rotodinámicas que representa la diferencia entre la altura neta de succión y la altura correspondiente a la presión de vapor en la entrada de la bomba necesaria para prevenir pérdidas (causadas por obstrucciones provenientes del vapor de cavitación) de más de 3% en la altura piezométrica total de la bomba. La razón de tener en cuenta la NPSH3 radica en que, a diferencia de la NPSH que se ve afectada por la densidad del fluido a bombear, la NPSH3 se ve afectada por la viscosidad cinemática del fluido (Hydraulic Institute, 2010).

2.3.5.5 Configuraciones de las bombas

En un sistema bomba-tubería, las bombas pueden tienen dos posibles configuraciones: configuración en serie y configuración en paralelo.

En la configuración en paralelo, el caudal a bombear se divide en el número de bombas que se tengan en paralelo. Sin embargo, todas las bombas generan la misma altura de presión piezométrica, es decir, la altura piezométrica total.

En la configuración en serie, la totalidad del caudal a bombear pasa por cada una de las bombas que se tengan en serie, pero la altura de presión piezométrica se divide en el número de bombas

y se va sumando, obteniendo al final de la configuración la altura piezométrica total. En esta configuración, la altura de presión piezométrica de succión es menor, por lo cual la NPSH es menor.

2.3.6 Oleoducto como una tubería en serie

De forma simplificada, un oleoducto puede ser visto como un sistema de tuberías en serie. Las tuberías en serie son dos o más tuberías colocadas una a continuación de la otra, las cuales se pueden diferenciar en los diámetros y/o en las rugosidades (es decir, las tuberías pueden estar hechas de materiales diferentes) (Saldarriaga, 2007). Los oleoductos que se tienen en Colombia están fabricados en acero, por lo cual se puede decir que la única característica física que varía en estos, es el diámetro.

En cualquier sistema de tuberías en serie, se conserva tanto la energía, como la masa. La conservación de energía establece que la altura topográfica debe ser equivalente a la suma de las pérdidas por fricción y las pérdidas menores que se generan a lo largo de las tuberías que conforman la serie. Si se tienen en cuenta las características físicas de la tubería, la conservación de la energía puede expresarse a través de la siguiente ecuación:

$$H_T = \left(\sum_{i=1}^{n} f_i \frac{l_i}{d_i} + \sum_{i=1}^{m} k_{m_i}\right) \frac{{v_i}^2}{2g}$$

Ecuación 2-14. Conservación de la energía en un sistema de tuberías en serie.

donde:

 H_T : altura topográfica.

f : factor de fricción de Darcy.

l: longitud de la tubería.

d: diámetro de la tubería.

 k_m : coeficiente de pérdidas menores.

v: velocidad media de la tubería.

n: número de tuberías.

m: número de accesorios.

La conservación de la energía es fundamental en los sistemas de oleoductos por bombeo, ya que permite calcular la potencia que debe ser suministrada por las bombas para que el crudo llegue a su destino con la altura de presión solicitada.

Por otro lado, la conservación de la masa establece que el caudal total que pasa por el sistema es igual al caudal que pasa por cualquier tubería más todos los caudales laterales aguas arriba de ésta (Saldarriaga, 2007). La conservación de la masa se expresa mediante la ecuación de

continuidad, que puede ser generalizada de la siguiente forma para un sistema de tuberías en serie:

$$Q_T = Q_\alpha + \sum_{i=1}^{\alpha - 1} Q_{L_i}$$

Ecuación 2-15. Conservación de la masa en un sistema de tuberías en serie.

donde:

 Q_T : caudal total que pasa por el sistema de tuberías en serie.

 Q_{α} : caudal que pasa por la tubería α de la serie.

 Q_L : caudales laterales en las uniones localizadas aguas arriba de la tubería α de la serie.

Para los sistemas de oleoductos por bombeo, los caudales laterales corresponden a los caudales almacenados en los tanques de almacenamiento de las estaciones de bombeo.

3 MODELACIÓN HIDRÁULICA DE UN OLEODUCTO. MODELO HIDRÁULICO ESTABLE DE LA EMPRESA OLEODUCTO CENTRAL S.A. – OCENSA

Para el desarrollo de este proyecto de grado, se utilizó el software *Modelo Estable y Extendido* desarrollado por el Centro de Investigaciones en Acueductos y Alcantarillados – CIACUA de la Universidad de los Andes. Este software es utilizado por la empresa OLEODUCTO CENTRAL S.A. – OCENSA para efectuar el análisis hidráulico de su oleoducto. El software consta de 10 hojas electrónicas en Excel que permiten modelar la operación del oleoducto Cusiana – La Belleza – Vasconia – Coveñas bajo diferentes configuraciones de batcheo¹ y de bombeo, y permite hacer un análisis de la hidráulica del oleoducto en estado estable y en periodo extendido (Centro de Investigaciones en Acueductos y Alcantarillados – CIACUA, 2012). Sin embargo, de acuerdo con el objetivo general del presente proyecto de grado, se realizaron análisis hidráulicos en estado estable solamente. Por esta razón, se utilizaron solamente 6 de las 10 hojas electrónicas: INICIO, BATCHES, BOMBAS, DRA, HIDRÁULICA y PERFILES. A continuación, se describe brevemente cada una de estas hojas:

- INICIO: interfaz principal del software. Permite ingresar datos de entrada como el número de bombas en línea, presión de succión deseada, caudal y porcentaje de reducción de fricción con DRA para cada una de las estaciones de bombeo. De igual manera, permite visualizar si se generan alamas de caudal, velocidad y potencia en las estaciones de bombeo, el mínimo margen a la Slack Line y a la MAOP, y otros resultados principales de las simulaciones.
- BATCHES: contiene la información (gravedad API, G_s (60°F) y viscosidad cinemática del crudo a dos temperaturas diferentes) de cada uno de los tipos de crudo existentes en Colombia y mezclas entre estos. Su función principal es el ingreso de los trenes de batcheo que se transportan en el oleoducto para cada simulación. De igual manera, permite generar nuevas mezclas, requiriendo como datos de entrada el volumen de cada crudo contenido en la mezcla (en bpd) y la fracción porcentual de este en la mezcla.
- BOMBAS: Contiene la información general de la configuración de bombeo por estación, así como las curvas de la bomba, de eficiencia y de potencia de cada una de las bombas. Asimismo, contiene la información correspondiente al comportamiento de las bombas con agua y permite realizar correcciones a las curvas anteriormente mencionadas por la viscosidad cinemática del crudo y la velocidad rotacional de operación de la bomba.
- DRA: contiene las curvas de reducción porcentual de fricción contra concentración de DRA (en ppm) para cada tipo de crudo transportado.
- HIDRÁULICA: contiene información detallada por abscisa. Se tienen características topológicas, características de la tubería, información del fluido transportado,

¹ La empresa OLEODUCTO CENTRAL S.A. – OCENSA realiza el transporte de crudo a través de los sistemas de oleoductos por bombeo de dos formas: por batcheo y mezclado. El transporte de crudo por batcheo consiste en impulsar de manera individual fracciones de crudo de la misma clasificación (OLEODUCTO CENTRAL S.A. – OCENSA, 2013).

características termohidráulicas e hidráulicas y algunas propiedades de las estaciones de bombeo.

• PERFILES: presenta resultados gráficos de las simulaciones en cuanto a alturas piezométricas se refiere. Por ende, permite asegurar de manera gráfica que no haya presiones negativas en el oleoducto y que la línea de gradiente hidráulico se encuentre por encima de la Slack Line y por debajo de la MAOP.

De igual manera, es importante resaltar que el software fue desarrollado para las unidades típicas de la industria petrolera. Estas unidades y su conversión al sistema internacional de unidades (SI) se presentan a continuación:

Concepto	Unidad típica	Sistema Internacional de Unidades (SI)	Equivalencia
Viscosidad cinemática	cSt	m²/s	$1cSt = 1 \times 10^{-6}m^2/s$
Altura piezométrica total	psi	mcc	$1psi = 1mcc \times \rho [kg/m^3] \\ \times 0,001423$
Caudal	gpm	m3/s	1gpm = 0.0000631m ³ /s
	bpd	m3/s	$1 \text{bpd} = 0.00000138010 \text{ m}^3/\text{s}$
Potencia	hp	W	1hp = 746W

Tabla 3-1. Equivalencia entre las unidades típicas de la industria petrolera y el Sistema Internacional de Unidades (SI).

Los software de simulación como el *Modelo Estable y Extendido*, son un componente fundamental de los sistemas de control en tiempo real y adquisición de datos SCADA² (Supervisory Data Acquisition and Control), debido a que permiten monitorear la operación del oleoducto. Estos tienen como finalidad evaluar las condiciones de las bombas y las válvulas del oleoducto, ver cómo se pude mantener el funcionamiento correcto de estas, validar los cambios que se realicen en el oleoducto, y proveer entradas para programas de seguimiento de batches y alarmas (Trung, 1995).

² La empresa OLEODUCTO CENTRAL S.A. – OCENSA, cuenta con un sistema SCADA en la estación La Belleza.

4 EFECTOS DE LA DISMINUCIÓN DE VISCOSIDAD EN LAS BOMBAS

Los primeros efectos hidráulicos de la disminución de viscosidad que fueron evaluados para los sistemas de oleoductos por bombeo, fueron las correcciones que se le deben hacer a las curvas de la bomba, las curvas de eficiencia y las curvas de potencia (curvas de caudal contra potencia absorbida por la bomba) de las bombas que se emplean en las estaciones de bombeo, cuando se bombea un fluido con una viscosidad superior a la del agua (como lo es el caso del crudo ligero y el crudo pesado), lo cual genera un aumento en las pérdidas por fricción y reduce el desempeño de la bombas.

Las correcciones que se realizan a estas tres curvas, determinan cuál es la altura piezométrica total que debe generar la bomba para lograr transportar un caudal determinado (curvas de la bomba), qué eficiencia tendrá la bomba al transportar este caudal (curvas de eficiencia) y cuál es la potencia requerida por la bomba para lograr transportar este caudal (curvas de potencia).

En el software, una primera serie de correcciones, se realizan siguiendo la metodología establecida en el estándar *American National Standard (Guideline) for Effects of Liquid Viscosity on Rotodynamic (Centrifugal and Vertical) Pump Performance (ANSI/HI 9.6.7-2010)* (Hydraulic Institute, 2010). Como su nombre lo indica, el estándar es una guía para evaluar los efectos de la viscosidad en bombas rotodinámicas, como lo son las bombas centrífugas que se utilizan en los sistemas de oleoductos por bombeo. Por esta razón, las especificaciones presentadas en él, no aplican para corregir los efectos de viscosidad en otro tipo de bombas, como las bombas de desplazamiento positivo que son empleadas en los pozos de explotación de crudo pesado. De igual forma, cabe resaltar que la metodología presentada en el estándar para realizar las correcciones, está basada en métodos empíricos, razón por la cual se obtiene un desempeño aproximado de la bomba cuando esta bombea un fluido con viscosidad superior a la del agua, y no su desempeño real en campo.

Las correcciones que se realizan y repercuten de manera directa en las curvas mencionadas, son tres: corrección a la altura piezométrica total de la bomba (C_H), corrección al caudal que puede ser transportado por la bomba (C_Q) y corrección a la eficiencia de la bomba (C_η). La determinación de estos factores de corrección depende exclusivamente de un número de Reynolds ajustado a la velocidad específica de la bomba, denominado parámetro B (Hydraulic Institute, 2010). El parámetro B se calcula con la siguiente ecuación:

$$B = 26.6 \frac{v_{vis}^{0.5} H_{BEP-W}^{0.0625}}{Q_{BEP-W}^{0.375} N^{0.25}}$$

Ecuación 4-1. Parámetro B.

donde:

 v_{vis} : viscosidad cinemática del fluido a bombear [cSt]³.

 H_{BEP-W} : altura piezométrica total de la bomba en el punto de mayor eficiencia con agua [ft].

 Q_{BEP-W} : caudal en el punto de mayor eficiencia con agua [gpm].

N: velocidad rotacional de la bomba [rpm].

Dependiendo del valor del parámetro B, C_H , C_Q y C_η se calculan de la siguiente manera:

1. B≤1

 $C_H = C_Q = C_\eta = 1$

Ecuación 4-2. C_H, C_Q y C_η para B≤1.

2. 1<B<40

 $C_Q = 2,71^{-0,165(\log_{10} B)^{3,15}}$ Ecuación 4-3. C_Q para 1<B<40.

Ecuación 4-4.С_н para 1<B<40.

$$C_{H} = 1 - \left[\left(1 - C_{Q} \right) \left(\frac{Q_{W}}{Q_{BEP-W}} \right)^{0.75} \right]$$

donde:

B: parámetro B.

 Q_W : valores de caudal menores o mayores al caudal en el punto de mayor eficiencia con agua [gpm].

 Q_{BEP-W} : caudal en el punto de mayor eficiencia con agua [gpm].

$$C_n = B^{-(0,0547B^{0,69})}$$
 Ecuación 4-5. C_η para 1

Cuando el parámetro B es mayor o igual a 40 (B≥40), se requiere un análisis teórico de pérdidas por fricción y un balance de potencia para determinar las curvas de la bomba, de eficiencia y de potencia. Estos análisis están por fuera del alcance del proyecto de grado y no fueron implementados en el software, debido a que se está siempre en los dos primeros rangos del parámetro B cuando se trabaja con crudos ligeros, medianos, pesados o extrapesados.

Teniendo en cuenta estos factores de corrección, el software realiza una primera corrección a las curvas de la bomba, eficiencia y potencia de la bomba que se tienen (es decir, aquellas que corresponden al comportamiento de la bomba con agua) de la siguiente manera:

³ Esta viscosidad cinemática debe ser mayor a la viscosidad cinemática del agua. Las viscosidades cinemáticas de los crudos (ligeros, medianos, pesados y extrapesados) cumplen a cabalidad con esta condición.

Universidad de los Andes	ICYA 3102 - 201310
Departamento de Ingeniería Civil y Ambiental	
Centro de Investigaciones en Acueductos y	
Alcantarillados – CIACUA	
Efectos hidráulicos de la disminución de viscosidad	l en los
sistemas de oleoductos por bombeo.	

$Q_{vis} = C_Q Q_W$	Ecuación 4-6. Determinación del caudal que puede transportar la bomba con un fluido viscoso a partir del caudal de la bomba con agua.
$H_{vis} = C_H H_W$	Ecuación 4-7. Determinación de la altura piezométrica total con un fluido viscoso a partir de la altura piezométrica total con agua.
$\eta_{vis} = C_{\eta} \eta_W$	Ecuación 4-8.Determinación de la eficiencia de la bomba con un fluido viscoso a partir de la eficiencia de la bomba con agua.
$P_{vis} = \frac{Q_{vis}H_{vis}s}{3960\eta_{vis}}$	Ecuación 4-9.Determinación de la potencia absorbida por la bomba con un fluido viscoso a partir de la potencia consumida por la bomba con aqua.

donde:

 Q_W : caudal de la bomba con agua [gpm].

 H_W : altura piezométrica total generada por la bomba con agua [ft].

 η_W : eficiencia de la bomba con agua.

s: potencia del eje de transmisión de la bomba en brake horsepower [BHP].

En las ecuaciones anteriores, el subíndice vis hace referencia al fluido viscoso con el que se está trabajando, en este caso crudo de cualquier clasificación, mientras que el subíndice W hace referencia al agua. Con estas correcciones se construyen curvas preliminares de la bomba, de eficiencia y de potencia.

Una segunda y última serie de correcciones, son las que se deben hacer a las curvas preliminares de la bomba, de eficiencia y de potencia obtenidas por la velocidad rotacional de operación de la bomba cuando ésta opera con crudo (N_0). En el software, la determinación de la velocidad rotacional de operación de la bomba se realiza mediante el método numérico de la falsa posición (Centro de Investigaciones en Acueductos y Alcantarillados – CIACUA, 2012). Con esta velocidad, se hace establece una relación entre la velocidad rotacional de operación de la bomba cuando ésta trabaja con crudo, y la velocidad rotacional de referencia (N), es decir, la velocidad rotacional de la bomba cuando ésta opera con agua. El factor de relación obtenido modifica los valores de caudal que puede ser bombeado, altura piezométrica total y de potencia absorbida por la bomba (Hydraulic Institute, 2010) de la siguiente forma:

$$Q_{vis_{N_o}} = Q_{vis} \frac{N_o}{N}$$
 Ecuación 4-10. Caudal que puede ser transportado por la bomba con un fluido viscoso, corregido por la velocidad rotacional de operación de la bomba.

$$H_{vis_{N_o}} = H_{vis} \left(\frac{N_o}{N}\right)^2$$

Ecuación 4-11. Altura piezométrica total con un fluido viscoso, corregida por la velocidad rotacional de operación de la bomba.

$$P_{vis_{N_o}} = P_{vis} \left(\frac{N_o}{N}\right)^3$$

Ecuación 4-12. Potencia absorbida por la bomba con un fluido viscoso, corregida por la velocidad rotacional de operación de la bomba.

donde:

 Q_{vis} : caudal de la bomba con un fluido viscoso, en este caso, crudo de cualquier clasificación [gpm].

 H_{vis} : altura piezométrica total generada por la bomba con un fluido viscoso, en este caso, crudo de cualquier clasificación [ft].

 P_{vis} : potencia absorbida por la bomba con un fluido viscoso, en este caso, crudo de cualquier clasificación [BHP].

 N_o : velocidad rotacional de operación de la bomba cuando ésta opera con un fluido viscoso, en este caso, crudo de cualquier clasificación [rpm].

N: velocidad rotacional de referencia [rpm].

Cabe resaltar que esta segunda corrección sólo aplica para las bombas centrífugas de velocidad rotacional variable. En el modelo hidráulico estable, todas las bombas de las estaciones de bombeo son bombas centrífugas de velocidad rotacional variable, exceptuando la bomba booster de la estación de bombeo El Porvenir.

Teniendo en cuenta esto, en este proyecto de grado se realizaron simulaciones en cada una de las bombas de las estaciones de bombeo para crudo ligero Cusiana (2,26 cSt a 104°F), crudo pesado Castilla (175,1 cSt a 104°F) y crudo pesado Castilla disminuyendo su viscosidad cinemática en un 99%. Sin embargo, para ilustrar los efectos de la disminución de viscosidad en las bombas, se presentará únicamente la serie de simulaciones realizada en la bomba principal de la estación de bombeo Cusiana.

La primera simulación que se realizó, fue la bomba operando con crudo Cusiana. Los datos de entrada son los resaltados en azul en la siguiente tabla:

Tabla 4-1. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Cusiana.

			Inform	ación inicial		
Número de etapas de la bomba	5	Etapas		Nuevo diámetro del impulsor de la bomba (dn)	15	in
Velocidad de referencia (N)	3960	rpm]	Viscosidad cinemática del crudo	2.26	cSt
Diámetro del impulsor de la bomba referencia (d)	15	in]	Gravedad específica del crudo	0.817	
Q BEP-W	7000	gpm	1	Caudal (Total por bomba)	6348.6	gpm
H BEP-W (por etapa)	1060	ft-agua]	Altura piezométrica (Total por bomba)	3511.2	ft
η BEP-W	84.0	%	1	Velocidad específica de la bomba (Ns)	1783.47	OK
Viscosidad cinemática del agua	1	cSt	1	Parámetro B	0.28	OK
Gravedad específica del agua	1	-]	CQ	1	
Velocidad rotacional máxima	4158	rpm	1	СН	Mirar tabla "Corrección por viscosidad"	
Velocidad rotacional mínima	2994	rpm]	Сη	1	
			-	dn/d	1	-

Asimismo, se presentan los datos de la curva de la bomba con agua, de la determinación de la velocidad rotacional de operación de la bomba, de las correcciones respectivas y, por último, se presentan las curvas de la bomba, de eficiencia y de potencia obtenidas:

Tabla 4-2. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Cusiana.

	Cur	va de la bomba con aç	Jua						Correction por vi	scosidad	
Q	H (Teórica)	H (Calculada)	Q/N	P	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	6800.0	6800.2	0.0		0.0	0.0	1.0	6800.0	0.0		0.0
1000.0	6750.0	6750.7	0.3	7411.8	23.0	1000.0	1.0	6750.0	0.3	6054.8	23.0
2000.0	6700.0	6692.8	0.5	7861.0	43.0	2000.0	1.0	6700.0	0.5	6429.3	43.0
3000.0	6650.0	6667.1	0.8	8560.8	59.0	3000.0	1.0	6650.0	0.8	6976.2	59.0
4000.0	0.0000	6585.3	1.0	9238.7	72.0	4000.0	1.0	6600.0	1.0	7564.8	72.0
5000.0	6250.0	6247.6	1.0	10019.2	80.0	5000.0	1.0	6250.0	1.0	9109.1	90.0
6000.0	5000.0	5000 P	1.5	10650.9	84.0	6000.0	1.0	5000.0	1.5	9604.6	84.0
7000.0	5900.0	5905.0	1.5	10055.8	04.0	7000.0	1.0	5900.0	1.5	0054.0	04.0
7000.0	5300.0	5301.0	1.8	11155.4	84.0	7000.0	1.0	5300.0	1.8	9112.2	84.0
8000.0	4600.0	4590.7	2.0	11310.0	82.0	8000.0	1.0	4600.0	2.0	9258.9	82.0
9000.0	3800.0	3805.9	2.3	11233.6	77.0	9000.0	1.0	3800.0	2.3	9163.5	77.0
10000.0	2800.0	2798.8	2.5	10708.5	66.0	10000.0	1.0	2800.0	2.5	8752.7	66.0
Deterr	minación de la vel	locidad rotacional de o	operación de	la bomba			Correcció	n por viscosio	lad v velocidad rot	acional de operación de la bomba	
Deterr Velocidad mínima	minación de la vel Eunción	locidad rotacional de o	operación de Función	la bomba Velocidad	Función	0@N2	Corrección	n por viscosio H@N2	lad y velocidad rot Q/N2@N2	acional de operación de la bomba P	n@N2
Deterr Velocidad mínima 2994 0	minación de la vel Función -1058 5	locidad rotacional de o Velocidad máxima 4158.0	operación de Función 2977 0	la bomba Velocidad 3299 3	Función	Q@N2	Corrección	n por viscosio H@N2 [ff1]	lad y velocidad rot Q/N2@N2 [ft/rom]	acional de operación de la bomba P IBHP1	η@N2 [%]
Detern Velocidad mínima 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0	operación de Función 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3	Función -131.5 -131.5	Q@N2 [gpm]	Corrección	n por viscosio H@N2 [ft] 4720 2	lad y velocidad rot Q/N2@N2 [ft/rpm]	acional de operación de la bomba P [BHP]	η@N2 [%]
Deterr Velocidad mínima 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2	Corrección	n por viscosio H@N2 [ft] 4720.2 4685 5	lad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3	acional de operación de la bomba P [BHP] 3601 8	η@N2 [%] 0.0 23.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666 3	Corrección	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8	tad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5	acional de operación de la bomba P [BHP] 3501.8 3718 3	η@N2 [%] 0.0 23.0 43.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 2290.2	Función -131.5 -131.5 -131.5 -131.5 131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5	Corrección	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8 4616.1	dad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6	η@N2 [%] 0.0 23.0 43.0 59.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5	Corrección	n por viscosia H@N2 [ft] 4720.2 4685.5 4650.8 4616.1	dad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 4.0	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4034.6	η@N2 [%] 0.0 23.0 43.0 59.0 72.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Deperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4465.8	Corrección	n por viscosia H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4497.0	dad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 4.2	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4755.5	η@N2 [%] 0.0 23.0 43.0 59.0 72.0
Detern Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de (Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Deperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8	Corrección	Por viscosia H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4005 5	lad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 4.5	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0
Detern Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de (Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Speración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4988.9	Corrección	n por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5	lad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5 5028.4	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0
Detern Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Separación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1	Corrección	n por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0	lad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5 5028.4 5269.9	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0
Detern Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel 1 Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Example 7 Example 7 Examp	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4988.9 5832.1 6665.3	Corrección	n por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4581.4 4407.9 4095.5 3679.0 3193.1	Idd y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0	acional de operación de la bomba P [BHP] 3501.8 37718.3 4034.6 4375.0 4735.5 5028.4 5269.9 5354.8	n@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0
Deter Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel - Función - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	Perturbu Service Perturbu Service Pertu	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4	Corrección	por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8	iad y velocidad rot Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5 5028.4 5269.9 5354.8 5299.6	n@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0 77.0
Deter Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel - Función - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocidad rot Q/N2@N2 (t/rpm) 0.0 0.3 0.5 0.8 1.0 1.5 1.8 2.0 2.3 2.5	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5 5028.4 5269.9 5354.8 5299.6 5062.0	n@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0 77.0 66.0
Deter Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función - 1058.5 - 1058.	locidad rotacional de Velocidad máxima 4158.0 4158	speración de Función 2977.0 2077.0 20	la bomba Velocidad 3299.3 3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3322.6 4195.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosi H@N2 (ft) 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6 Normal	lad y velocidad rot ON2@N2 (ft/pm) 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	acional de operación de la bomba p [BHP] 3501.8 37718.3 4034.6 4375.0 4735.5 5028.4 5269.9 5354.8 5299.6 5062.0	η@N2 [%] 0.0 43.0 43.0 89.0 72.0 84.0 84.0 84.0 84.0 84.0 84.0 66.0
Deter Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -	locidad rotacional de Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	speración de Función 2977.0 2070.0 20	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 8299.3 3299.3 8299.3 8299.3 8299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q @ N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4988.9 5832.1 6665.3 7498.4 8331.6 Alarms	Corrección	por viscosi H@N2 [fi] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6 Normal	lad y velocidad rot QN2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	acional de operación de la bomba P [BHP] 3501.8 3718.3 4034.6 4375.0 4735.5 5028.4 5269.9 5354.8 5299.6 5062.0	¶@N2 [%] 0.0 23.0 43.0 55.0 72.0 80.0 84.0 8

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

Gráfica 4-1. Curvas de la bomba, de eficiencia y de potencia de la bomba principal de la estación de bombeo Cusiana con crudo ligero Cusiana.

Como se observa en la Gráfica 4-1 y en la Tabla 4-2, el comportamiento de la bomba cuando esta bombea un crudo ligero (en este caso, crudo Cusiana), no difiere de forma significativa a cuando esta bombea agua, en cuanto a eficiencia y velocidad rotacional de la bomba se refiere. El valor de eficiencia de la bomba obtenido cuando se transporta crudo Cusiana es de 83,0%, es decir, un valor de eficiencia 1,0% menor que la mayor eficiencia que se puede obtener cuando se bomba agua. Por otro lado, el factor de relación entre la velocidad rotacional de operación de la bomba y la velocidad rotacional de referencia (No/N) fue de 0.833, lo cual indica que la velocidad rotacional de la bomba se disminuye en un 16,7% cuando esta opera con crudo Cusiana.

De igual forma, la Gráfica 4-1 y en la Tabla 4-2 indican que el mayor efecto hidráulico que se presenta cuando se transporta crudo ligero, es la disminución de la potencia absorbida por la bomba. La potencia absorbida por la bomba obtenida cuando esta bombea crudo Cusiana fue de 5537,7 BHP. Cuando se simula agua, al corregir la curva de potencia por la velocidad rotacional de operación de la bomba, se obtiene que la potencia absorbida por la bomba cuando esta bombea agua en el punto de mayor eficiencia es de 6450,3 BHP. Esto significa que la bomba reduce potencia absorbida en un 14,15% cuando se bombea crudo ligero, indicando que el transporte de crudo ligero de una estación de bombeo a otra llega a ser incluso más fácil que el transporte de agua en el punto de mayor eficiencia, ya que la potencia requerida por la bomba para bombear el crudo ligero es 14,15% menor a la requerida para bombear agua en el punto

La segunda simulación que se realizó, fue la bomba operando con crudo Castilla. Los datos de entrada son los resaltados en azul en la siguiente tabla:

			Inform	ación inicial		
Número de etapas de la bomba	5	Etapas		Nuevo diámetro del impulsor de la bomba (dn)	15	in
Velocidad de referencia (N)	3960	rpm]	Viscosidad cinemática del crudo	175.1	cSt
Diámetro del impulsor de la bomba referencia (d)	15	in		Gravedad específica del crudo	0.943	
Q BEP-W	7000	gpm]	Caudal (Total por bomba)	6348.6	gpm
H BEP-W (por etapa)	1060	ft-agua	1	Altura piezométrica (Total por bomba)	3511.2	ft
η BEP-W	84.0	%]	Velocidad específica de la bomba (Ns)	1783.47	OK
Viscosidad cinemática del agua	1	cSt]	Parámetro B	2.48	OK
Gravedad específica del agua	1	-	1	CQ	0.991270145	
Velocidad rotacional máxima	4158	rpm]	СН	Mirar tabla "Corrección por viscosidad"	
Velocidad rotacional mínima	2994	rpm		Сη	0.911279029	
				dn/d	1	-

Tabla 4-3. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Castilla.

Al igual que en la simulación anterior, se presentan los datos de la curva de la bomba con agua, de la determinación de la velocidad rotacional de operación de la bomba, de las correcciones respectivas y, por último, se presentan las curvas de la bomba, de eficiencia y de potencia obtenidas:

Tabla 4-4. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla.

	Curv	va de la bomba con aç	ua						Corrección p	or viscosidad	
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	6800.0	6800.2	0.0		0.0	0.0	1.0	6800.0	0.0		0.0
1000.0	6750.0	6750.7	0.3	7411.8	23.0	991.3	1.0	6736.3	0.3	7586.7	21.0
2000.0	6700.0	6692.8	0.5	7861.0	43.0	1982.5	1.0	6677.1	0.5	8044.7	39.2
3000.0	6650.0	6667.1	0.8	8560.8	59.0	2973.8	1.0	6619.2	0.8	8718.4	53.8
4000.0	6600.0	6585.3	1.0	9238.7	72.0	3965.1	1.0	6562.1	1.0	9443.4	65.6
5000.0	6350.0	6347.6	1.3	10018.2	80.0	4956.4	1.0	6306.9	1.3	10210.7	72.9
6000.0	5900.0	5909.8	1.5	10659.8	84.0	5947.6	1.0	5854.1	1.5	10831.5	76.5
7000.0	5300.0	5301.0	1.8	11155.4	84.0	6938.9	1.0	5253.7	1.8	11340.8	76.5
8000.0	4600.0	4590.7	2.0	11310.0	82.0	7930.2	1.0	4555.6	2.0	11512.8	74.7
9000.0	3800.0	3805.9	2.3	11233.6	77.0	8921.4	1.0	3759.9	2.3	11383.9	70.2
10000.0	2800.0	2798.8	2.5	10708 5	66.0	9912 7	1.0	2768 1	2.5	10864.0	60.1
Determ Velocidad mínima	inación de la ve Función	locidad rotacional de o Velocidad máxima	operación de Función	la bomba Velocidad	Función	Q@N2	Correcciór	n por viscosio H@N2	lad y velocida Q/N2@N2	d rotacional de operación de la bomba P	n@N2
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	[apm]		[ft]	[ft/rpm]	[BHP]	[%]
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	0.0		4773.4	0.0		0.0
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	830.5		4728.7	0.3	4462.0	21.0
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	1661.0		4687.2	0.5	4731.4	39.2
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	2491.6		4646.5	0.8	5127.6	53.8
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	3322.1		4606.4	1.0	5554.1	65.6
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	4152.6		4427.3	1.3	6005.3	72.9
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	4983.1		4109.4	1.5	6370.5	76.5
2994.0	-1115.5	4158.0	2894.1	3317.8	-137.4	5813.7		3688.0	1.8	6670.0	76.5
						6644.2		3197.9	2.0	6771 1	74.7
						7474.7		2620 4	2.0	6695.2	70.2
						9205.2		1042 1	2.5	6290.5	60.1
						0000.2		104011	2.0	000010	
Valasidad	sional da encorra	ión de le hembe	2247.0			Alorma	Freed	Normet			
Velocidad rotac V	cional de operac elocidad del mo No/N O/No	ión de la bomba tor	3317.8 825.1 0.838 1.913	rpm rpm		Alarms	Speed	Normal			
Velocidad rotad V	cional de operac elocidad del mo No/N Q/No Eficiencia	ión de la bomba tor	3317.8 825.1 0.838 1.913 75.6	rpm rpm %		Alarms	Speed	Normal			
Velocidad rotad V	cional de operac elocidad del mo No/N Q/No Eficiencia Potencia	ión de la bomba tor	3317.8 825.1 0.838 1.913 75.6 7019.2	rpm rpm % BHP		Alarms	Speed	Normal			

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

ICYA 3102 - 201310

Gráfica 4-2. Curvas de la bomba, de eficiencia y de potencia de la bomba principal de la estación de bombeo Cusiana con crudo pesado Castilla.

Como se observa en la Gráfica 4-2 y en la Tabla 4-4, el comportamiento de la bomba cuando esta bombea un crudo pesado (en este caso, crudo Castilla), es completamente opuesto a cuando esta bombea un crudo ligero, en cuanto a eficiencia de la bomba se refiere. El valor de eficiencia obtenido cuando se transporta crudo Castilla es de 75,6%, es decir, un valor de eficiencia 8,4% menor que la mayor eficiencia que se puede obtener cuando se bomba agua, y 7,4% menor que la eficiencia alcanzada por la bomba cuando se bombea crudo Cusiana. Por otro lado, el factor de relación entre la velocidad rotacional de operación de la bomba y la velocidad rotacional de referencia (No/N) fue igual al obtenido con crudo Cusiana, es decir, 0,833. Sin embargo, se puede observar que la velocidad rotacional de operación de la bomba con crudo Castilla es de 3317,8 rpm, es decir, mayor a la obtenida con crudo Cusiana (3299,3 rpm). Aun así, se puede concluir que la velocidad rotacional de la bomba no varía de manera sustancial con respecto al crudo se está bombeando, disminuyendo en un 16,7% (con respecto a la velocidad rotacional de referencia) cuando esta opera con crudo Cusiana o con crudo Castilla.

Como era de esperarse, la potencia absorbida por la bomba cuando se bombea crudo Castilla resultó ser un 21,10% mayor a la obtenida cuando se bombea crudo Cusiana, y 8,10% mayor a la potencia absorbida por la bomba cuando esta bombea agua en el punto de mayor eficiencia.

Los resultados obtenidos indican que el transporte de crudo pesado es más complicado que el transporte de crudo ligero, ya que la bomba requiere un 21,10% más de potencia para transportar el crudo de una estación de bombeo a otra y, además, se bombea con una eficiencia bastante menor.

La tercera y última simulación realizada, fue la bomba operando con crudo Castilla, cuando la viscosidad cinemática de este es reducida en un 99%. Los datos de entrada son los resaltados en azul en la siguiente tabla:

Tabla 4-5. Datos de entrada de la simulación de la bomba principal Cusiana con crudo Castilla (viscosidad cinemática reducida en un 99%).

Como de costumbre, se presentan los datos de la curva de la bomba con agua, de la determinación de la velocidad rotacional de operación de la bomba, de las correcciones respectivas y, por último, se presentan las curvas de la bomba, de eficiencia y de potencia obtenidas:

Tabla 4-6. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%).

	Curv	va de la bomba con ag	ua						Corrección p	or viscosidad	
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]		[ft]	[ft/rpm]	[BHP]	%
0.0	6800.0	6800.2	0.0		0.0	0.0	1.0	6800.0	0.0		0.0
1000.0	6750.0	6750.7	0.3	7411.8	23.0	1000.0	1.0	6750.0	0.3	6988.6	23.0
2000.0	6700.0	6692.8	0.5	7861.0	43.0	2000.0	1.0	6700.0	0.5	7420.8	43.0
3000.0	6650.0	6667.1	0.8	8560.8	59.0	3000.0	1.0	6650.0	0.8	8052.1	59.0
4000.0	6600.0	6585.3	1.0	9238.7	72.0	4000.0	1.0	6600.0	1.0	8731.5	72.0
5000.0	6350.0	6347.6	1.3	10018.2	80.0	5000.0	1.0	6350.0	1.3	9450.8	80.0
6000.0	5900.0	5909.8	1.5	10659.8	84.0	6000.0	1.0	5900.0	1.5	10035.5	84.0
7000.0	5300.0	5301.0	1.8	11155.4	84.0	7000.0	1.0	5300.0	1.8	10517.5	84.0
8000.0	4600.0	4590.7	2.0	11310.0	82.0	8000.0	1.0	4600.0	2.0	10686.9	82.0
9000.0	3800.0	3805.9	2.3	11233.6	77.0	9000.0	1.0	3800.0	2.3	10576.7	77.0
10000.0	2800.0	2798.8	2.5	10708.5	66.0	10000.0	1.0	2800.0	2.5	10102.5	66.0
Deterr	minación de la ve	locidad rotacional de o	peración de	la bomba			Correcció	n por viscosio	lad y velocida	l rotacional de operación de la bomba	
Deterr Velocidad mínima	minación de la ve Función	locidad rotacional de c Velocidad máxima	peración de Función	la bomba Velocidad	Función	Q@N2	Correcció	n por viscosic H@N2	lad y velocida Q/N2@N2	l rotacional de operación de la bomba P	η@N2
Deterr Velocidad mínima 2994.0	minación de la ve Función -1058.5	locidad rotacional de c Velocidad máxima 4158.0	peración de Función 2977.0	la bomba Velocidad 3299.3	Función -131.5	Q@N2 [gpm]	Correcció	n por viscosic H@N2 [ft]	ad y velocida Q/N2@N2 [ft/rpm]	l rotacional de operación de la bomba P [BHP]	η@N2 [%]
Detern Velocidad mínima 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5	locidad rotacional de c Velocidad máxima 4158.0 4158.0	operación de Función 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3	Función -131.5 -131.5	Q@N2 [gpm] 0.0	Correcció	n por viscosio H@N2 [ft] 4720.2	ad y velocidad Q/N2@N2 [ft/rpm] 0.0	l rotacional de operación de la bomba P [BHP]	η@N2 [%] 0.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5	locidad rotacional de c Velocidad máxima 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2	Correcció	n por viscosio H@N2 [ft] 4720.2 4685.5	ad y velocidad Q/N2@N2 [ft/rpm] 0.0 0.3	l rotacional de operación de la bomba P [BHP] 4041.8	η@N2 [%] 0.0 23.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3	Correcció	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8	ad y velocidae Q/N2@N2 [ft/rpm] 0.0 0.3 0.5	i rotacional de operación de la bomba P [BHP] 4041.8 4291.8	η@N2 [%] 0.0 23.0 43.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5	Correcció	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8 4616.1	ad y velocidae Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8	i rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4556.8	η@N2 [%] 0.0 23.0 43.0 59.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6	Correcció	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4	ad y velocidao Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0	i rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8	η@N2 [%] 0.0 23.0 43.0 59.0 72.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8	Correcció	n por viscosio H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9	ad y velocidad Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3	I rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	pperación de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5	ad y velocidad Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5	i rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4556.8 5049.8 5465.8 5545.8 5580.3.9	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0
Deterr Velocidad mínima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4988.9 5832.1	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0	ad y velocidad Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4556.8 5049.8 5445.8 5545.8 5545.8 5603.9 6082.7	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función - 1058.5 - 1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 498.9 5832.1 6665.3	Correcció	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1	ad y velocidad Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0	I rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6	n@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la vel Función - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5 - 1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8	ad y velocida Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3	I rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4556.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9	η@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0 77.0
Deterr 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la ve Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6655.3 7498.4 8331.6	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocida Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	¶@N2 [%] 0.0 23.0 43.0 59.0 72.0 80.0 84.0 84.0 84.0 84.0 82.0 77.0 66.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la ve Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocida Q/N2@N2 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P (BHP) 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	n@N2 [%] 0.0 23.0 59.0 72.0 80.0 84.0 84.0 82.0 77.0 66.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la ve Función -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5 -1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0 2977.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosid H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocida O/N2@N2 [t/trpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4456.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	n@N2 [%] 0.0 23.0 59.0 72.0 80.0 84.0 84.0 84.0 82.0 77.0 66.0
Deterr Velocidad minima 2994.0	minación de la ve Función -1058.5 -1	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	peración de Función 2977.0 2077.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosić H@N2 [ft] 4720.2 4685.5 4650.8 4656.1 4581.4 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocida Q/N2@N2 [ft/pm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	n@N2 [%] 0.0 23.0 23.0 72.0 80.0 84.0 84.0 84.0 84.0 84.0 84.0 66.0
Detern Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 Velocidad rot	minación de la ve Función -1058.5 -1	locidad rotacional de o Velocidad máxima 4158.0 415	peración de Función 2977.0 2077.0	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 (ppm) 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6 Alarms	Corrección	n por viscosić H@N2 (fi) 4720.2 4655.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6 Normal	ad y velocida Q/N2@N22 [ft/rpm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	¶@N2 [%] 0.0 23.0 43.0 59.0 72.0 84.0 84.0 84.0 82.0 77.0 66.0
Detern Velocidad minima 2994.0	minación de la ve Función - 1058.5 - 1058.5	locidad rotacional de c Velocidad máxima 4158.0 415	2977.0 20000000000000000000000000000000000	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 rpm	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.6 4988.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosic H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6	ad y velocida QN/2@N/2 [ft/pm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4455.8 5049.8 5445.8 5049.8 5445.8 500.9 6082.7 6180.6 6116.9 5842.7	n@N2 [%] 0.0 23.0 43.0 55.0 80.0 84.0 84.0 82.0 77.0 66.0
Deterr Velocidad minima 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0 2994.0	minación de la ve Función - 1058.5 - 1058.5	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 0 4158.0	900 500 500 500 500 500 500 500 500 500	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 rpm	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q@N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4988.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosić H@N2 (ft) 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6 Normal	ad y velocida Q/N2@N2 [ft/pm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P (BHP) 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	η@N2 [%] 0.0 23.0 43.0 72.0 80.0 84.0 84.0 84.0 84.0 66.0
Detern Velocidad minima 2994.0	minación de la ve Función -1058.5 -1	locidad rotacional de o Velocidad máxima 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0 4158.0	90000000000000000000000000000000000000	la bomba Velocidad 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3 3299.3	Función -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5 -131.5	Q @ N2 [gpm] 0.0 833.2 1666.3 2499.5 3332.6 4165.8 4998.9 5832.1 6665.3 7498.4 8331.6	Corrección	n por viscosić H@N2 [ft] 4720.2 4685.5 4650.8 4616.1 4581.4 4407.9 4095.5 3679.0 3193.1 2637.8 1943.6 Normal	ad y velocida Q/N2@N22 [ft/pm] 0.0 0.3 0.5 0.8 1.0 1.3 1.5 1.8 2.0 2.3 2.5	d rotacional de operación de la bomba P [BHP] 4041.8 4291.8 4656.8 5049.8 5465.8 5803.9 6082.7 6180.6 6116.9 5842.7	¶@N2 [%] 0.0 23.0 43.0 59.0 72.0 84.0 84.0 84.0 82.0 77.0 66.0

ICYA 3102 - 201310

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

Gráfica 4-3. Curvas de la bomba, de eficiencia y de potencia de la bomba principal de la estación de bombeo Cusiana con crudo pesado Castilla (viscosidad cinemática reducida en un 99%).

Como se puede apreciar en la Gráfica 4-3 y en la Tabla 4-5, cuando se reduce la viscosidad cinemática del crudo Castilla en un 99%, este se comporta exactamente igual al crudo Cusiana, en cuanto a eficiencia y velocidad rotacional de la bomba se refiere. Por otro lado, la potencia absorbida por la bomba es igual a 6391.8 BHP, es decir, 13,36% mayor a la potencia absorbida obtenida cuando se bombea crudo Cusiana y 0,9% menor a la potencia absorbida obtenida cuando se bombea agua en el mayor punto de eficiencia. Esto indica que cuando se disminuye la viscosidad del crudo Castilla en un 99%, la potencia requerida por la bomba para bombear el crudo pesado es prácticamente igual a la requerida para bombear agua en el punto de mayor eficiencia, y la eficiencia con que se bombea el crudo pesado es igual a la eficiencia con la que se bombea el crudo ligero Cusiana.

A partir de las simulaciones se puede concluir que el crudo ligero siempre va a tener ventaja sobre el crudo pesado en el transporte mediante los sistemas de oleoductos por bombeo, ya que requiere de menos potencia para ser bombeado. De igual manera, se concluye que este valor de potencia no depende de la viscosidad cinemática del crudo, sino del valor de la gravedad específica de este a 60°F (G_s (60°F)). Adicionalmente, se concluye que entre menor sea la viscosidad cinemática del crudo, mayor es la eficiencia con la que este puede ser bombeado y que la viscosidad cinemática del crudo no afecta de manera sustancial la velocidad rotacional de operación de la bomba.

5 GENERACIÓN Y CONTROL DE ALARMAS EN LOS SISTEMAS DE OLEODUCTOS POR BOMBEO

En los sistemas de oleoductos por bombeo, se generan tres tipos de alarma: alarmas de caudal, alarmas de velocidad y alarmas de potencia. Como se mencionó anteriormente, una de las finalidades del modelo hidráulico estable es detectar en qué estaciones de bombeo y bajo qué condiciones de bombeo se generan estas alarmas. En primera instancia, se describirá la clasificación de los tres tipos de alarma mencionados anteriormente. Subsiguientemente, se presentará una serie de simulaciones realizadas en el software que muestran cómo se pueden controlar las alarmas de velocidad, enfocándose en una bomba, con el fin de asegurar condiciones de operación normales en el oleoducto.

5.1 Tipos de alarmas en los sistemas de oleoductos por bombeo

Las alarmas de caudal que se pueden generar en un sistema de oleoductos por bombeo son dos: underflow y overflow. Estas alarmas dependen de la relación entre la velocidad rotacional de operación de la bomba y la velocidad rotacional mínima o máxima de la bomba (alarma de underflow y alarma de overflow, respectivamente). Esta relación es multiplicada por un valor de caudal (en gpm) que depende exclusivamente de la estación de bombeo. Las alarmas de caudal son generadas de la siguiente manera:

1. Underflow

$$Q_{vis(por \ bomba)_i} < Q_{e_i} \frac{N_{o_i}}{N_{min_i}}$$

Ecuación 5-1. Alarma de caudal underflow.

2. Overflow

$$Q_{vis (por \ bomba)_i} > Q_{e_i} \frac{N_{o_i}}{N_{máx_i}}$$

Ecuación 5-2. Alarma de caudal overflow.

donde:

 $Q_{vis (por bomba)}$: caudal por bomba cuando se bombea un fluido viscoso, en este caso, crudo de cualquier clasificación [gpm].

 Q_e : valor de caudal que depende de la estación de bombeo [gpm].

 N_o : velocidad rotacional de operación de la bomba cuando ésta opera con un fluido viscoso, en este caso, crudo de cualquier clasificación [rpm].

 N_{min} : velocidad rotacional mínima de la bomba [rpm].

 $N_{máx}$: velocidad rotacional máxima de la bomba [rpm].

i: subíndice para indicar la estación de bombeo.

Al igual que las alarmas de caudal, las alarmas de velocidad se clasifican en dos tipos: underspeed y overspeed. Por ser alarmas de velocidad, resulta evidente que estas dependen de la velocidad rotacional de operación, mínima y máxima de la bomba. Las alarmas de velocidad se generan de la siguiente manera:

1. Underspeed

 $N_o < N_{min}$

Ecuación 5-3. Alarma de velocidad underspeed.

2. Overspeed

 $N_o > N_{m \Delta x}$

Ecuación 5-4. Alarma de velocidad overspeed.

donde:

 N_o : velocidad rotacional de operación de la bomba cuando ésta opera con un fluido viscoso, en este caso, crudo de cualquier clasificación [rpm].

 N_{min} : velocidad rotacional mínima de la bomba [rpm].

 N_{max} : velocidad rotacional máxima de la bomba [rpm].

Como se puede observar en las ecuaciones anteriores, las alarmas de caudal y de velocidad dependen de la velocidad rotacional de operación de la bomba. Asimismo, se había concluido en la sección anterior que la viscosidad cinemática del crudo no afecta de manera sustancial la velocidad rotacional de operación de la bomba. Esta conclusión sigue siendo válida, pero se debe tener en cuenta que al considerar todas las bombas de cada una de las estaciones de bombeo (es decir, el funcionamiento de la totalidad del oleoducto), la generación de alarmas depende fuertemente de la viscosidad del crudo que se está bombeando, especialmente en las últimas estaciones de bombeo, donde rara vez se obtienen condiciones normales de operación en las bombas. Esto se evidenciará más adelante en las simulaciones realizadas para la detección de alarmas en las estaciones de bombeo.

Por último, se tienen las alarmas de potencia. Las alarmas de potencia pueden ser solamente de un tipo: power limit. Estas alarmas se generan cuando la contribución del impulsor de la bomba (cuando este opera a un 95% de la velocidad rotacional máxima de la bomba) es menor al rendimiento que se requiere de este (η_{imp}). El rendimiento requerido del impulsor se calcula de la siguiente manera:

$$\eta_{imp} = \frac{P_{H_{vis}} \times 100\%}{\eta_{gearbox}}$$

Ecuación 5-5. Rendimiento requerido del impulsor.

donde:

 $P_{H_{vis}}$: potencia hidráulica adicionada por la bomba cuando esta bombea un fluido viscoso, en este caso, crudo de cualquier clasificación [BHP].

 $\eta_{gearbox}$: eficiencia de la caja de cambios (cuando la bomba opera con un motor diésel) o del variador de velocidad (cuando la bomba opera con un motor eléctrico).

5.2 Control de las alarmas de velocidad

La forma más simple de controlar las alarmas de velocidad en un oleoducto es a través de la incorporación de variadores de velocidad (convertidores directos o indirectos de frecuencia para las bombas que operan con motor eléctrico y cajas de cambios para las bombas que operan con motor diésel). Estos variadores tienen como finalidad cambiar la velocidad rotacional mínima y máxima de las bombas. Sin embargo, es importante resaltar que estos variadores de velocidad solo pueden ser implementados en bombas de velocidad rotacional variable.

En este proyecto de grado, para el caso de las bombas de velocidad rotacional constante (como lo es el caso de la bomba booster de la estación de bombeo El Porvenir), se implementaron dos alternativas de control más para las alarmas de velocidad. La primera de ellas fue almacenar o inyectar caudal en estaciones aguas arriba a la estación de bombeo donde se encuentra la bomba a controlar, con el fin de disminuir o aumentar el caudal a bombear. La segunda, consistió en variar el número de bombas en línea, es decir, apagar o prender motores.

Como se mencionó anteriormente, para ilustrar estas dos alternativas de control se realizó una serie de simulaciones en una bomba en underspeed, cuando esta bombea crudo pesado Castilla (175,1 cSt a 104°F). Se seleccionó como bomba en underspeed la bomba booster de la estación de bombeo El Porvenir.

La primera serie de simulaciones consistió en controlar la alarma de velocidad a través de las dos alternativas mencionadas anteriormente. Los datos de entrada son los siguientes:

Información gene	ral
	El Porvenir
	Booster
	Electric
Caudal [Kbpd]	653.0
Caudal [gpm]	19045.8
Número de bombas en línea	4

Tabla 5-1. Información general de las condiciones de bombeo.

Tabla 5-2. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo Castilla.

			Informaci	on inicial		
Número de etapas de la bomba	2	Etapas		Nuevo diámetro del impulsor de la bomba (dn)	17.26	in
Velocidad de referencia (N)	1185	rpm	1	Viscosidad cinemática del crudo	175.1	cSt
Diámetro del impulsor de la bomba referencia (d)	17.26	in		Gravedad específica del crudo	0.943	
Q BEP-W	4410	gpm		Caudal (Total por bomba)	4761.5	gpm
H BEP-W (por etapa)	78.3065	ft-agua	1	Altura piezométrica (Total por bomba)	78.4	ft
η BEP-W	73.5	%		Velocidad específica de la bomba (Ns)	2989.44	OK
Viscosidad cinemática del agua	1	cSt		Parámetro B	3.39	OK
Gravedad específica del agua	1	-	1	CQ	0.978007661	
Velocidad rotacional máxima	1185	rpm		CH	Mirar tabla "Corrección por viscosidad"	
Velocidad rotacional mínima	1185	rpm		Cη	0.856557327	
			-	dn/d	1	

Tabla 5-3. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (bomba booster El Porvenir).

	Curva d	e la bomba con agua						Co	rrección por vi	scosidad	
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0
1260.0	225.8	225.6	1.1	237.7	30.2	1232.3	1.0	223.9	1.0	254.0	25.9
1890.0	219.8	220.6	1.6	240.0	43.9	1848.4	1.0	217.3	1.6	254.5	37.6
2730.0	208.2	206.5	2.3	253.3	56.2	2670.0	1.0	205.0	2.3	270.8	48.1
3150.0	194.8	196.4	2.7	237.7	65.7	3080.7	1.0	191.5	2.6	249.5	56.3
3780.0	178.7	178.3	3.2	237.6	71.6	3696.9	1.0	175.2	3.1	251.5	61.3
3990.0	171.3	171.4	3.4	237.4	72.8	3902.3	1.0	167.8	3.3	250.1	62.3
4410.0	156.6	156.6	3.7	237.2	73.5	4313.0	1.0	153.2	3.6	249.7	63.0
4830.0	140.3	140.0	4.1	236.3	72.3	4723.8	1.0	137.0	4.0	249.0	61.9
5250.0	121.0	121.2	4.4	233.3	68.9	5134.5	1.0	117.9	4.3	244.3	59.0
5460.0	111.0	110.9	4.6	231.9	65.9	5339.9	1.0	108.1	4.5	243.4	56.5
6090.0	75.8	75.8	5.1	217.7	53.5	5956.1	1.0	73.7	5.0	227.8	45.9
Determi	inación de la velocio	dad rotacional de opera	ación de la b	omba		C	orrección p	or viscosidad y	velocidad rot	acional de operación de la bomba	
Velocidad mínima	Función	Velocidad máxima	Función	Velocidad	Función	Q@N2		H@N2	Q/N2@N2	P	η@N2
1000.0	-12.9	3000.0	1316.1	1019.5	-6.0	[gpm]		[ft]	[ft/rpm]	[BHP]	[%]
1019.5	-6.0	3000.0	1316.1	1028.4	-2.8	0.0		180.6	0.0		0.0
1028.4	-2.8	3000.0	1316.1	1032.6	-1.3	1077.4		171.1	1.0	169.7	25.9
1032.6	-1.3	3000.0	1316.1	1034.4	-0.6	1616.0		166.1	1.6	170.1	37.6
1034.4	-0.6	3000.0	1316.1	1035.3	-0.3	2334.3		156.7	2.3	181.0	48.1
1035.3	-0.3	3000.0	1316.1	1035.7	-0.1	2693.4		146.4	2.6	166.7	56.3
1035.7	-0.1	3000.0	1316.1	1035.9	-0.1	3232.1		133.9	3.1	168.0	61.3
1035.9	-0.1	3000.0	1310.1	1036.0	0.0	3411.7		120.3	3.3	167.2	62.3
1036.0	0.0	3000.0	1310.1	1036.0	0.0	3//0.8		117.1	3.0	166.9	63.0
						4129.9		104.7	4.0	166.4	61.9
						4489.0		90.1	4.3	163.3	59.0
						4668.6		82.6	4.5	162.7	56.5
						5207.5		50.5	5.0	152.3	45.9
			4000			A1	<u></u>				
velocidad rotac	cional de opéración o	se no somod si ec	1036	rpm		Marms	speed	underspeed			
Ve	elocidad del motor		257.7	rpm							
	NO/N		0.9								
	Eficiencia		4.596	9/-							
	Potencia		161.9	BHP							
			.51.5	2111							

ACUA A

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

Gráfica 5-1. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla.

1. Primera alternativa de control. Aumento de caudal de 653 Kbpd a 807 Kbpd.

Tabla 5-4. Información general de las nuevas condiciones de bombeo (primera alternativa de control).

Información gene	ral
	El Porvenir
	Booster
	Electric
Caudal [Kbpd]	807.0
Caudal [gpm]	23537.5
Número de bombas en línea	4

Tabla 5-5. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (condiciones de bombeo primera alternativa de control).

	Curva de	e la bomba con <u>agua</u>						Co	rrección por vi	scosidad	
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0
1260.0	225.8	225.6	1.1	237.7	30.2	1232.3	1.0	223.9	1.0	254.0	25.9
1890.0	219.8	220.6	1.6	240.0	43.9	1848.4	1.0	217.3	1.6	254.5	37.6
2730.0	208.2	206.5	2.3	253.3	56.2	2670.0	1.0	205.0	2.3	270.8	48.1
3150.0	194.8	196.4	2.7	237.7	65.7	3080.7	1.0	191.5	2.6	249.5	56.3
3780.0	178.7	178.3	3.2	237.6	71.6	3696.9	1.0	1/5.2	3.1	251.5	61.3
3990.0	171.3	171.4	3.4	237.4	72.0	3902.3	1.0	107.0	3.3	200.1	62.3
4410.0	100.0	100.0	3.7	237.2	73.5	4313.0	1.0	103.2	3.0	249.7	63.0
4630.0	140.3	140.0	4.1	230.3	72.3	4723.0	1.0	137.0	4.0	249.0	61.9
5250.0	121.0	121.2	4.4	233.3	66.9	5134.5	1.0	117.9	4.3	244.3	59.0
5460.0	111.0	110.9	4.6	231.9	65.9	5339.9	1.0	108.1	4.5	243.4	56.5
6090.0	75.8	75.8	5.1	217.7	53.5	5956.1	1.0	73.7	5.0	227.8	45.9
Determ	inación de la veloció	lad rotacional de one	ración de la bo	omba		C	orrección no	r viscosidad	v velocidad rot	acional de operación de la homba	
Velocidad mínima	Función	Velocidad máxima	Función	Velocidad	Función	Q@N2	on coolon pe	H@N2	Q/N2@N2	P	n@N2
1000.0	-73.4	3000.0	1270.8	1109.2	-32.1	[gpm]		[ft]	[ft/rpm]	[BHP]	[%]
1109.2	-32.1	3000.0	1270.8	1155.8	-12.8	0.0		236.3	0.0		0.0
1155.8	-12.8	3000.0	1270.8	1174.2	-5.0	1232.3		223.9	1.0	254.0	25.9
1174.2	-5.0	3000.0	1270.8	1181.4	-2.0	1848.4		217.3	1.6	254.5	37.6
1181.4	-2.0	3000.0	1270.8	1184.2	-0.8	2670.0		205.0	2.3	270.8	48.1
1184.2	-0.8	3000.0	1270.8	1184.3	-0.7	3080.7		191.5	2.6	249.5	56.3
1184.3	-0.7	3000.0	1270.8	1184.7	-0.6	3696.9		175.2	3.1	251.5	61.3
1184.7	-0.6	3000.0	1270.8	1184.9	-0.5	3902.3		167.8	3.3	250.1	62.3
1184.9	-0.5	3000.0	1270.8	1185.0	-0.4	4313.0		153.2	3.6	249.7	63.0
						4723.8		137.0	4.0	249.0	61.9
						5134.5		117.9	4.3	244.3	59.0
						5359.9		73.7	4.5	243.4	30.5 45.9
						5550.1		13.1	5.0	221.0	43.9
Velocidad rotac Ve	ional de operación c elocidad del motor No/N Q/No	le la bomba	1185 294.7 1.0 4.966	rpm rpm		Alarms	Speed	Normal			
	Eficiencia		47.4	%							

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

Gráfica 5-2. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (condiciones de bombeo primera alternativa de control).

Como se puede observar en la Tabla 5-5, la alarma de velocidad de la bomba booster de la estación de El Porvenir se puede controlar aumentando el caudal a bombear, ya que se pasa de tener una velocidad rotacional de operación de la bomba de 1036 rpm a tener una de 1185 rpm. Sin embargo, al hacer una comparación con la Tabla 5-3, la eficiencia de la bomba se ve reducida en 7,5% y la potencia absorbida por la bomba se incrementa en un 30,21%, ya que se están bombeando 154 Kbps más de crudo pesado. Este hecho también implica una redefinición del punto de operación de la bomba ya que, para una altura piezométrica total por bomba fija, se está bombeando más caudal. Este se evidencia claramente al comparar la Gráfica 5-1 con la Gráfica 5-2. En la primera de estas, el punto de operación de la bomba se encuentra en un caudal total por bomba de 4761,5 gpm para una altura piezométrica total por bomba de 78,4 ft. Por otro lado, en la segunda gráfica, el punto de operación de la bomba se encuentra en un caudal total por bomba de 8884,4 gpm para la misma altura piezométrica total por bomba, desplazando el punto de operación de la bomba en la gráfica hacia la derecha. De igual forma, en la Gráfica 5-2 se puede ver que este punto de operación se encuentra cerca del límite de operación de la bomba.

2. Segunda alternativa de control. Variación del número de bomba en línea de 4 a 3.

Información gene	ral
	El Porvenir
	Booster
	Electric
Caudal [Kbpd]	653.0
Caudal [gpm]	19045.8
Número de bombas en línea	3

Tabla 5-6. Información general de las nuevas condiciones de bombeo (segunda alternativa de control).

Tabla 5-7. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (condiciones de bombeo segunda alternativa de control).

Q	Curva de la bom Q H (Teórica) H (C							6	prreccion por visc	osidad	
	H (Teórica)	H (Calculada)	Q/N	P	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0
1260.0	225.8	225.6	1.1	237.7	30.2	1232.3	1.0	223.9	1.0	254.0	25.9
1890.0	219.8	220.6	1.6	240.0	43.9	1848.4	1.0	217.3	1.6	254.5	37.6
2730.0	208.2	206.5	2.3	253.3	56.2	2670.0	1.0	205.0	2.3	270.8	48.1
3150.0	194.8	196.4	2.7	237.7	65.7	3080.7	1.0	191.5	2.6	249.5	56.3
3780.0	178.7	178.3	3.2	237.6	71.6	3696.9	1.0	175.2	3.1	251.5	61.3
3990.0	171.3	171.4	3.4	237.4	72.8	3902.3	1.0	167.8	3.3	250.1	62.3
4410.0	156.6	156.6	3.7	237.2	73.5	4313.0	1.0	153.2	3.6	249.7	63.0
4930.0	140.3	140.0	4.1	237.2	73.3	4702.0	1.0	127.0	4.0	249.0	61.0
4630.0	140.3	140.0	4.1	230.3	72.3	4723.0	1.0	137.0	4.0	249.0	61.9
5250.0	121.0	121.2	4.4	233.3	66.9	5134.5	1.0	117.9	4.3	244.3	59.0
5460.0	111.0	110.9	4.6	231.9	65.9	5339.9	1.0	108.1	4.5	243.4	56.5
6090.0	75.8	75.8	5.1	217.7	53.5	5956.1	1.0	73.7	5.0	227.8	45.9
Determin	ación de la velocid										
	acion de la veloció	dad rotacional de oper	ación de la bo	omba		C	orrección p	or viscosidad	y velocidad rotaci	ional de operación de la bomba	
elocidad mínima	Función	dad rotacional de oper Velocidad máxima	ación de la bo Función	omba Velocidad	Función	C Q@N2	Corrección p	or viscosidad H@N2	y velocidad rotaci Q/N2@N2	ional de operación de la bomba P	η@N2
locidad mínima 1000.0	Función -97.0	dad rotacional de oper Velocidad máxima <u>3000.0</u>	ración de la bo Función 1247.5	omba Velocidad 1144.3	Función -46.9	C Q@N2 [gpm]	Corrección p	or viscosidad H@N2 [ft]	y velocidad rotaci Q/N2@N2 [ft/rpm]	ional de operación de la bomba P [BHP]	η@N2 [%]
locidad mínima 1000.0 1144.3	Función -97.0 -46.9	dad rotacional de oper Velocidad máxima <u>3000.0</u> <u>3000.0</u>	ración de la bo Función 1247.5 1247.5	omba Velocidad 1144.3 1211.5	Función -46.9 -17.9	C Q@N2 [gpm] 0.0	corrección p	or viscosidad H@N2 [ft] 263.5	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0	ional de operación de la bomba P [BHP]	η@N2 [%] 0.0
locidad mínima 1000.0 1144.3 1211.5	Función -97.0 -46.9 -17.9	dad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0	ración de la bo Función 1247.5 1247.5 1247.5	omba Velocidad 1144.3 1211.5 1236.9	Función -46.9 -17.9 -6.6	C Q@N2 [gpm] 0.0 1301.4	corrección p	or viscosidad H@N2 [ft] 263.5 249.7	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0	ional de operación de la bomba P [BHP] 299.2	η@N2 [%] 0.0 25.9
elocidad mínima 1000.0 1144.3 1211.5 1236.9	Función -97.0 -46.9 -17.9 -6.6	dad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1247.5 1247.5 1247.5 1247.5 1247.5	omba Velocidad 1144.3 1211.5 1236.9 1246.2	Función -46.9 -17.9 -6.6 -2.4	C Q@N2 [gpm] 0.0 1301.4 1952.1	corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6	ional de operación de la bomba P [BHP] 299.2 299.8	η@N2 [%] 0.0 25.9 37.6
locidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2	Función -97.0 -46.9 -17.9 -6.6 -2.4	Jad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6	Función -46.9 -17.9 -6.6 -2.4 -0.9	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3	ional de operación de la bomba P (BHP) 299.2 299.8 319.0	η@N2 [%] 0.0 25.9 37.6 48.1
locidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6	Función -97.0 -46.9 -17.9 -6.6 -2.4 -0.9	dad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6	ional de operación de la bomba P (BHP) 299,2 299,8 319,0 293,9	η@N2 [%] 0.0 25.9 37.6 48.1 56.3
locidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3	Jad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1	C @N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1	ional de operación de la bomba P [BHP] 299.2 299.8 319.0 293.9 293.9 296.2	n@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3
blocidad mínima 1000.0 11144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1250.8 1251.2	Función -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1	Iad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la be Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Dimba Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	C Q@N2 (gpm) 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3
locidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Función -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	Jad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la be Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.6 2.3 2.6 3.1 3.3 3.6	ional de operación de la bomba P (BHP) 299.2 293.9 293.9 296.2 294.6 294.1	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0
Iocidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1246.2 1249.6 1250.8 1251.2 1251.4	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C @N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7	Corrección p	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 152.8	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.1 294.3	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9
elocidad mínima 1000.0 11144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	Statisticational de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	iación de la ba Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 522.2	Corrección p	r viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 152.8 131.5	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3	ional de operación de la bomba P (BHP) 299,2 299,2 299,2 299,2 299,2 299,2 299,2 299,2 299,3 299,3 296,2 294,6 294,1 293,3 294,7 293,3	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0
elocidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	Statisticational de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la ba Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	omba Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5539.4	Corrección p	or viscosidad H@N2 [tt] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 152.8 131.5 120.6	y velocidad rotaci Q/N2@N2 (ftrpm) 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.1 293.3 287.8 287.8 286.7	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 59.0 56.5
locidad mínima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	Jad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la be Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	omba Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5633.4 6290.1	Corrección p	r viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 152.8 131.5 120.6 82.2	y velocidad rotaci Q/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.6 294.1 293.3 287.8 287.8 286.7 268.4	η@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 56.5 45.9
elocidad minima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4	Euclid - 97.0 - 46.9 - 17.9 - 6.6 - 2.4 - 0.9 - 0.3 - 0.1 0.0	Jad rotacional de oper Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bé Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	Omba Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 [gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5639.4 6290.1	Corrección p	r viscosidad H @N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 155.4 187.1 170.8 152.8 131.5 120.6 82.2	y velocidad rotaci O/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 295.2 294.5 294.6 294.1 293.3 287.6 293.3 287.8 286.7 268.4	∎©N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 56.5 45.9
Elocidad minima 1000.0 1144.3 1211.5 1236.9 1246.2 1250.8 1250.8 1250.8 1251.2 1251.4	Euclid - 97.0 - 97.0 - 46.9 - 17.9 - 6.6 - 2.4 - 0.9 - 0.3 - 0.1 0.0	Velocidad máxima 3000.0	ación de la br Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	mba Velocidad 1144.3 1211.5 1236.2 1249.6 1250.4 1251.2 1251.4 1251.5	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q@N2 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5639.4 6290.1	Speed	or viscosidad H@N2 [fi] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 155.4 187.1 170.8 155.8 131.5 120.6 82.2	y velocidal rotaci O/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 294.9 294.6 294.1 293.3 287.8 286.7 266.4	1 @N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 61.3 63.0 61.9 59.0 56.5 45.9
locidad minima 1000.0 1144.3 1211.5 1236.9 1246.2 1248.6 1256.8 1251.2 1251.4 Velocidad rotacio Velo	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0	Velocidad máxima 3000.0	ación de la br Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	mba Velocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.4 1251.4 1251.5 rpm rpm	Función -46.9 -17.9 -6.6 -2.4 -0.3 -0.1 0.0 0.0	C Q @N2 (gpm] 0.0 1301.4 1952.1 2253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5633.4 6290.1	Speed	or viscosidad H@N2 (ft) 263.5 249.7 242.3 228.7 242.3 228.7 242.3 228.7 242.3 242.3 242.3 242.3 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.4 195.6 206.6 202.2	y velocidad rotaci O/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 294.9 294.5 294.4 294.1 293.3 294.5 294.5 294.5 294.5 294.5 294.5 294.6 294.7 268.4	n@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 59.0 59.0 55.5 45.9
locidad minima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 Velocidad rotacio Velo	Euclid - 97.0 - 97.0 - 46.9 - 17.9 - 6.6 - 2.4 - 0.3 - 0.1 0.0	Velocidad máxima 3000.0	ación de la br Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	volocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 1251.5 rpm rpm	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q @N2 [gpm] 0.0 1301.4 1952.1 2253.5 3904.2 4121.1 4554.9 4988.7 5439.4 6290.1 Alarms	Speed	or viscosidad H@N2 [ft] 263.5 249.7 242.3 284.7 213.6 195.4 195.4 195.4 197.4 187.1 170.8 152.8 131.5 120.6 82.2	y velocidal rotaci O/N2@N2 [(t/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.4 293.3 287.6 293.3 286.7 268.4	100 16 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
elocidad mininu 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 Velocidad rotacio Velo	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.1 0.0	Jad rotacional de oper Velocidad máxima 3000.0	ación de la br Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	2010 2010 2010 2010 2010 2010 2010 2010	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C Q @N2 [gpm] 0.0 1301.4 1952.1 2253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5639.4 6290.1 Alarms	Speed	or viscosidad H@N/2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 152.8 131.5 120.6 82.2	y velocidad rotaci O/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.6 294.6 294.1 293.3 287.8 286.7 268.4	1 @N2 1%1 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 56.5 45.9
Velocidad minima 1000.0 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 Velocidad rotacio Velo	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.3 -0.1 0.0	Velocidad máxima 3000.0	ación de la br Función 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5 1247.5	weight of the second	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0 0.0	C Q @N2 (gpm] 0.0 1301.4 1952.1 2819.7 3253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5633.4 6290.1 Alarms	Speed	or viscosidad H@N2 [ft] 263.5 249.7 242.3 228.7 213.6 195.4 195.4 197.1 170.8 152.8 131.5 120.6 82.2 Overspeed	y velocidad rotaci O/R2@R2 [ft/rpm] 0.0 1.0 1.6 2.6 3.1 3.3 3.6 4.0 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.6 294.1 294.1 293.3 287.8 286.7 268.4	¶@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 63.0 61.9 59.0 56.5 545.9
Velocidad minima 10000 1144.3 1211.5 1236.9 1246.2 1249.6 1250.8 1251.2 1251.4 Velocidad rotacio Velo	Function -97.0 -46.9 -17.9 -6.6 -2.4 -0.9 -0.1 0.0	Jad rotacional de oper Velocidad máxima 3000.0	24201 do la ba Función 1247.5 1247.	Welocidad 1144.3 1211.5 1236.9 1246.2 1249.6 1249.6 1251.2 1251.2 1251.5 rpm rpm % BHP	Función -46.9 -17.9 -6.6 -2.4 -0.9 -0.3 -0.1 0.0 0.0	C C (2002 [gpm] 0.0 1301.4 1952.1 2253.5 3904.2 4121.1 4554.9 4988.7 5422.5 5639.4 6230.1 Alarms	Speed	or viscosidad H@N2 [ft] 283.5 249.7 242.3 228.7 213.6 195.4 187.1 170.8 131.5 120.6 82.2 Overspeed	y velocidad rotaci O/N2@N2 [ft/rpm] 0.0 1.0 1.6 2.3 2.6 3.1 3.3 3.6 4.0 4.3 4.3 4.5 5.0	ional de operación de la bomba P (BHP) 299.2 299.8 319.0 293.9 296.2 294.1 294.1 293.3 287.8 286.7 266.7 268.4	¶@N2 [%] 0.0 25.9 37.6 48.1 56.3 61.3 62.3 61.9 55.0 55.5 45.9

Para esta alternativa de control se llegó a pensar que lo más lógico, debido a que las bombas se encontraban en underspeed, era poner una bomba más en línea, es decir, pasar de 4 a 5 bombas en línea. Sin embargo, al realizar este proceso se obtenía un error en la operación hidráulica del oleoducto por lo cual se optó por reducir el número de bombas en línea y controlar las alarmas de velocidad resultantes a través de la primera alternativa de control. En la Tabla 5-7 se puede detallar que, bajo estas nuevas condiciones de bombeo, las bombas pasan de estar trabajando en underspeed a trabajar en overspeed, debido a que se tienen menos bombas disponibles para bombear el mismo caudal. La nueva alarma de velocidad es controlada disminuyendo el caudal a bombear de 653 Kbps a 605 Kbps.

Tabla 5-8. Información gener	al de las condiciones	de bombeo resultantes.
------------------------------	-----------------------	------------------------

Información general							
	El Porvenir						
	Booster						
	Electric						
Caudal [Kbpd]	605.0						
Caudal [gpm]	17645.8						
Número de bombas en línea	3						

Tabla 5-9. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (condiciones de bombeo resultantes).

	Curva de la bomba con agua						Corrección por viscosidad					
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2	
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%	
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0	
1260.0	225.8	225.6	1.1	237.7	30.2	1232.3	1.0	223.9	1.0	254.0	25.9	
1890.0	219.8	220.6	1.6	240.0	43.9	1848.4	1.0	217.3	1.6	254.5	37.6	
2730.0	208.2	206.5	2.3	253.3	56.2	2670.0	1.0	205.0	2.3	270.8	48.1	
3150.0	194.8	196.4	2.7	237.7	65.7	3080.7	1.0	191.5	2.6	249.5	56.3	
3780.0	178.7	178.3	3.2	237.6	71.6	3696.9	1.0	175.2	3.1	251.5	61.3	
3990.0	171.3	171.4	3.4	237.4	72.8	3902.3	1.0	167.8	3.3	250.1	62.3	
4410.0	156.6	156.6	3.7	237.2	73.5	4313.0	1.0	153.2	3.6	249.7	63.0	
4830.0	140.3	140.0	4.1	236.3	72.3	4723.8	1.0	137.0	4.0	249.0	61.9	
5250.0	121.0	121.2	4.4	233.3	68.9	5134.5	1.0	117.9	4.3	244.3	59.0	
5460.0	111.0	110.9	4.6	231.9	65.9	5339.9	1.0	108.1	4.5	243.4	56.5	
6090.0	75.8	75.8	5.1	217.7	53.5	5956.1	1.0	73.7	5.0	227.8	45.9	
Determin	hacion de la veloci	dad rotacional de opera	ición de la bo	omba	E	0.010	orrección po	r viscosidad	y velocidad rol	lacional de operación de la bomba		
1000 0	72.2	2000 0	1271 0	1100.0	Puncion 22.0		- <u> </u>	1@N2	G/NZ@NZ	۲ رونیو:	1@112	
1109.0	-73.3	3000.0	1271.0	1155.5	-12.8	[gpin] 0.0		236.3	0.0	[BHF]	0.0	
1155.5	-12.8	3000.0	1271.0	1173.8	-5.0	1232.3		223.9	1.0	254.0	25.9	
1173.8	-5.0	3000.0	1271.0	1181.1	-2.0	1848.4		217.3	1.6	254.5	37.6	
1181.1	-2.0	3000.0	1271.0	1183.9	-0.8	2670.0		205.0	2.3	270.8	48.1	
1183.9	-0.8	3000.0	1271.0	1184.0	-0.7	3080.7		191.5	2.6	249.5	56.3	
1184.0	-0.7	3000.0	1271.0	1184.4	-0.5	3696.9		175.2	3.1	251.5	61.3	
1184.4	-0.5	3000.0	1271.0	1184.6	-0.5	3902.3		167.8	3.3	250.1	62.3	
1184.6	-0.5	3000.0	1271.0	1185.0	-0.3	4313.0		153.2	3.6	249.7	63.0	
						4723.8		137.0	4.0	249.0	61.9	
						5134.5		117.9	4.3	244.3		
						E220 0			4.5	242.4	59.0	
						3339.9		108.1	4.5	243.4	59.0 56.5	
						5956.1		108.1 73.7	4.5	243.4	59.0 56.5 45.9	
Velocidad rotaci	onal de operación	de la bomba	1185	rom		5355.5 5956.1	Speed	108.1 73.7 Normal	4.5 5.0	243.4 227.8	59.0 56.5 45.9	
Velocidad rotacia	onal de operación (locidad del motor	de la bomba	1185 294.7	rpm		5956.1	Speed	108.1 73.7 Normal	4.5 5.0	227.8	59.0 56.5 45.9	
Velocidad rotacio Vel	onal de operación locidad del motor No/N	de la bomba	1185 294.7 1.0	rpm rpm		5956.1 Alarms	Speed	108.1 73.7 Normal	4.5 5.0	273.6	59.0 56.5 45.9	
Velocidad rotacio Vel	onal de operación locidad del motor No/N Q/No	de la bomba	1185 294.7 1.0 4.964	rpm rpm		5956.1	Speed	108.1 73.7 Normal	4.5 5.0	233.4 227.8	59.0 56.5 45.9	
Velocidad rotaci Vel	onal de operación locidad del motor No/N Q/No Eficiencia	de la bomba	1185 294.7 1.0 4.964 47.4	rpm rpm %		5956.1	Speed	108.1 73.7 Normal	4.5 5.0	233.4	59.0 56.5 45.9	

GIACUA

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

Gráfica 5-3. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (condiciones de bombeo resultantes).

Como se puede observar en la Tabla 5-9, la alarma de velocidad de la bomba booster de la estación de El Porvenir se puede controlar reduciendo el número de bombas en línea y disminuyendo el caudal a bombear, ya que se pasa de tener una velocidad rotacional de operación de la bomba de 1251 rpm a tener una de 1185 rpm. Sin embargo, al hacer una comparación con la Tabla 5-3, la eficiencia de la bomba se ve reducida en el mismo valor que se redujo cuando se utilizó la primera alternativa de control (7,5%) y la potencia absorbida por la bomba se incrementa en un 30,12% (0,09% menos que cuando se utilizó la primera alternativa de control), ya que se están bombeando 46 Kbps menos de crudo pesado, pero con un número inferior de bombas. De nuevo, este hecho implica una redefinición del punto de operación de la bomba ya que, para una altura piezométrica total por bomba fija, se está bombeando menos caudal. Esto se evidencia claramente al comparar la Gráfica 5-1 con la Gráfica 5-3. Ya se había mencionado que, en la primera de estas, el punto de operación de la bomba se encuentra en un caudal total por bomba de 4761,5 gpm para una altura piezométrica total por bomba de 78,4 ft. Por otro lado, en la segunda gráfica, el punto de operación de la bomba se encuentra en un caudal total por bomba de 5901,4 gpm para la misma altura piezométrica total por bomba, desplazando el punto de operación de la bomba en la gráfica nuevamente hacia la derecha. Asimismo, en la Gráfica 5-3 se puede ver que este punto de operación se encuentra cerca del límite de operación de la bomba. A partir de estos resultados se concluye que el control de alarmas es independiente de la alternativa de control que se elija (variación del caudal a bombear o variación del número de bombas en línea). De igual manera, se concluye que los tanques de almacenamiento de las estaciones de bombeo desempeñan un papel supremamente importante, no sólo en el control de las alarmas de caudal, sino también en el control de las alarmas de velocidad.

La segunda serie de simulaciones consistió en realizar el proceso de control de alarmas anterior utilizando la primera alternativa, cuando la viscosidad cinemática del crudo es reducida en un 99%. La razón para realizar solamente una alternativa de control radica en que se concluyó anteriormente que el control de alarmas es independiente de la alternativa de control que se elija.

Las condiciones de bombeo iniciales para esta segunda serie de simulaciones, son las indicadas en la Tabla 5-1. Los otros datos de entrada son los siguientes:

Información inicial											
Número de etapas de la bomba	2	Etapas		Nuevo diámetro del impulsor de la bomba (dn)	17.26	in					
Velocidad de referencia (N)	1185	rpm		Viscosidad cinemática del crudo	1.751	cSt					
Diámetro del impulsor de la bomba referencia (d)	17.26	in		Gravedad específica del crudo	0.943						
Q BEP-W	4410	gpm		Caudal (Total por bomba)	4761.5	gpm					
H BEP-W (por etapa)	78.3065	ft-agua		Altura piezométrica (Total por bomba)	78.4	ft					
η BEP-W	73.5	%		Velocidad específica de la bomba (Ns)	2989.44	OK					
Viscosidad cinemática del agua	1	cSt		Parámetro B	0.34	OK					
Gravedad específica del agua	1	-		CQ	1						
Velocidad rotacional máxima	1185	rpm		CH	Mirar tabla "Corrección por viscosidad"						
Velocidad rotacional mínima	1185	rpm		Cη	1						
			-	dn/d	1	-					

Tabla 5-10. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo Castilla (viscosidad cinemática reducida en un 99%).

Tabla 5-11. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%).

Curva de la bomba con agua						Corrección por viscosidad					
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0
1260.0	225.8	225.6	1.1	237.7	30.2	1260.0	1.0	225.8	1.1	224.4	30.2
1890.0	219.8	220.6	1.6	240.0	43.9	1890.0	1.0	219.8	1.6	225.5	43.9
2730.0	208.2	206.5	2.3	253.3	56.2	2730.0	1.0	208.2	2.3	240.9	56.2
3150.0	194.8	196.4	2.7	237.7	65.7	3150.0	1.0	194.8	2.7	222.3	65.7
3780.0	178.7	178.3	3.2	237.6	71.6	3780.0	1.0	178.7	3.2	224.6	71.6
3990.0	171.3	171.4	3.4	237.4	72.8	3990.0	1.0	1/1.3	3.4	223.6	72.8
4410.0	100.0	100.0	3.7	231.2	73.5	4410.0	1.0	0.001	3.7	223.0	73.5
4830.0	140.3	140.0	4.1	236.3	72.3	4830.0	1.0	140.3	4.1	223.4	72.3
5250.0	121.0	121.2	4.4	233.3	68.9	5250.0	1.0	121.0	4.4	219.5	68.9
5460.0	111.0	110.9	4.6	231.9	65.9	5460.0	1.0	111.0	4.6	218.8	65.9
6090.0	75.8	75.8	5.1	217.7	53.5	6090.0	1.0	75.8	5.1	205.3	53.5
Determin	ación de la velocio	dad rotacional de opera	ación de la bo	omba		Co	orrección p	or viscosidad	y velocidad ro	tacional de operación de la bomba	
Velocidad mínima	Función	Velocidad máxima	Función	Velocidad	Función	Q@N2		H@N2	Q/N2@N2	P	η@N2
1000.0	-6.2	3000.0	1336.0	1009.2	-2.9	[gpm]		1461	lft/rpm1	IBHP1	
1009.2	-2.9	2100111	4000 0	4040 5	4.0	0.0		474.4	0.0	(Bill)	[%]
1013.5	-1.3	3000.0	1336.0	1013.5	-1.3	0.0		174.1	0.0	(511)	[%] 0.0
1013.4	-0.6	3000.0	1336.0 1336.0	1013.5 1015.4 1016.2	-1.3 -0.6	0.0 1081.5 1622.2		174.1 166.3 162.0	0.0	141.9	[%] 0.0 30.2 43.0
1016.3	-0.6	3000.0 3000.0 3000.0	1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7	-1.3 -0.6 -0.3	0.0 1081.5 1622.2 2343.2		174.1 166.3 162.0	0.0 1.1 1.6 2.3	141.9 142.6 152.3	[%] 0.0 30.2 43.9 56.2
1016.3	-0.6 -0.3 -0.1	3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9	-1.3 -0.6 -0.3 -0.1	0.0 1081.5 1622.2 2343.2 2703.6		174.1 166.3 162.0 153.4 143.5	0.0 1.1 1.6 2.3 2.7	141.9 142.6 152.3 140.6	[%] 0.0 30.2 43.9 56.2 65.7
1016.3 1016.7 1016.9	-0.6 -0.3 -0.1	3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0	-1.3 -0.6 -0.3 -0.1 -0.1	0.0 1081.5 1622.2 2343.2 2703.6 3244.4		174.1 166.3 162.0 153.4 143.5 131.7	0.0 1.1 1.6 2.3 2.7 3.2	141.9 142.6 152.3 140.6 142.0	[%] 0.0 30.2 43.9 56.2 65.7 71.6
1016.3 1016.7 1016.9 1017.0	-0.6 -0.3 -0.1 -0.1 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6		174.1 166.3 162.0 153.4 143.5 131.7 126.2	0.0 1.1 1.6 2.3 2.7 3.2 3.4	141.9 142.6 152.3 140.6 142.0 141.4	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1		174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7	141.9 142.6 152.3 140.6 142.0 141.4 141.4	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6		174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1		174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4 141.2 138.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3		174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.2 138.8 138.4	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.00 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0		174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.00 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1	-0.6 -0.3 -0.1 -0.1 -0.1 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0	Sanc	174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.00 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1 Velocidad rotacio	-0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0	Speed	174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.00 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1 Velocidad rotacic Velocidad rotacic	-0.6 -0.3 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1 1017.1 rpm	-1.3 -0.6 -0.3 -0.1 -0.1 -0.1 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0	Speed	174.1 166.3 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1 Velocidad rotacic Vel	-0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0 Alarms	Speed	174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 89.1 81.7 55.8	0.0 1.1 1.6 2.3 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1 Velocidad rotacic Velocidad rotacic	-0.6 -0.3 -0.1 -0.1 -0.1 0.0 0.0 0.0 0.0 No/N O/No Effciencia	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 9 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1 1017.1 rpm rpm	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1001.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0 Alarms	Speed	174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
1016.3 1016.7 1016.9 1017.0 1017.1 Velocidad rotacic Velocidad rotacic	-0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NoN 0/No Eficiencia	3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0 1336.0	1013.5 1015.4 1016.3 1016.7 1016.9 1017.0 1017.1 1017.1 1017.1 1017.1	-1.3 -0.6 -0.3 -0.1 -0.1 0.0 0.0 0.0	0.0 1081.5 1622.2 2343.2 2703.6 3244.4 3424.6 3785.1 4145.6 4506.1 4686.3 5227.0 Alarms	Speed	174.1 174.1 166.3 162.0 153.4 143.5 131.7 126.2 115.4 103.4 89.1 81.7 55.8	0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.6 5.1	141.9 142.6 152.3 140.6 142.0 141.4 141.4 141.2 138.8 138.4 129.8	[%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

ICYA 3102 - 201310

Gráfica 5-4. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (viscosidad cinemática reducida en un 99%).

Como se puede observar en la Tabla 5-11 y la Gráfica 5-4, cuando se reduce la viscosidad cinemática del crudo Castilla en un 99%, la bomba booster de la estación de Bombeo El Porvenir se comporta como si estuviera bombeando un crudo ligero, es decir, la eficiencia y la potencia absorbida por la bomba cambian sustancialmente, pero la velocidad rotacional de operación de la bomba no lo hace, teniendo nuevamente una alarma de velocidad de underspeed en la bomba. Al realizar una comparación entre la Tabla 5-3 y la Tabla 5-11, se puede ver que cuando se bombea crudo Castilla, reduciendo su viscosidad cinemática en un 99%, se aumenta la eficiencia de la bomba en 9,6% y la potencia absorbida por la bomba disminuye en un 17,40%.

Como se mencionó anteriormente, se procede a realizar el control de alarma de velocidad a través de la variación del caudal a bombear, aumentando este de 653 Kbps a 830 Kbps. Las nuevas condiciones de bombeo se detallan a continuación:

Información general							
	El Porvenir						
	Booster						
	Electric						
Caudal [Kbpd]	830.0						
Caudal [gpm]	24208.3						
Número de bombas en línea	4						

Tabla 5-12. Información general de las nuevas condiciones de bombeo.

Tabla 5-13. Datos de entrada de la simulación de la bomba booster El Porvenir con crudo Castilla (viscosidad cinemática reducida en un 99%, nuevas condiciones de bombeo).

Información inicial										
Número de etapas de la bomba	2	Etapas		Nuevo diámetro del impulsor de la bomba (dn)	17.26	in				
Velocidad de referencia (N)	1185	rpm	1	Viscosidad cinemática del crudo	1.751	cSt				
Diámetro del impulsor de la bomba referencia (d)	17.26	in	1	Gravedad específica del crudo	0.943					
Q BEP-W	4410	gpm		Caudal (Total por bomba)	6052.1	gpm				
H BEP-W (por etapa)	78.3065	ft-agua		Altura piezométrica (Total por bomba)	78.4	ft				
η BEP-W	73.5	%	1	Velocidad específica de la bomba (Ns)	2989.44	OK				
Viscosidad cinemática del agua	1	cSt		Parámetro B	0.34	OK				
Gravedad específica del agua	1	-]	CQ	1					
Velocidad rotacional máxima	1185	rpm		СН	Mirar tabla "Corrección por viscosidad"					
Velocidad rotacional mínima	1185	rpm		Сη	1					
			-	dn/d	1	-				

Tabla 5-14. Curva de la bomba con agua, determinación de la velocidad rotacional de operación de la bomba, y correcciones por viscosidad y velocidad rotacional de operación de la bomba cuando se bombea crudo Castilla (viscosidad cinemática reducida en un 99%, nuevas condiciones de bombeo).

Curva de la bomba con agua						Corrección por viscosidad					
Q	H (Teórica)	H (Calculada)	Q/N	Р	η	Q@V2	СН	H@V2	Q/N@V2	Р	η@V2
[gpm]	[ft]	[ft]	[ft/rpm]	[BHP]	%	[gpm]	-	[ft]	[ft/rpm]	[BHP]	%
0.0	236.3	236.3	0.0		0.0	0.0	1.0	236.3	0.0		0.0
1260.0	225.8	225.6	1.1	237.7	30.2	1260.0	1.0	225.8	1.1	224.4	30.2
1890.0	219.8	220.6	1.6	240.0	43.9	1890.0	1.0	219.8	1.6	225.5	43.9
2730.0	208.2	206.5	2.3	253.3	56.2	2730.0	1.0	208.2	2.3	240.9	56.2
3150.0	194.8	196.4	2.7	237.7	65.7	3150.0	1.0	194.8	2.7	222.3	65.7
3780.0	178.7	178.3	3.2	237.6	71.6	3780.0	1.0	178.7	3.2	224.6	71.6
3990.0	171.3	171.4	3.4	237.4	72.8	3990.0	1.0	171.3	3.4	223.6	72.8
4410.0	156.6	156.6	3.7	237.2	73.5	4410.0	1.0	156.6	3.7	223.6	73.5
4830.0	140.3	140.0	4.1	236.3	72.3	4830.0	1.0	140.3	4.1	223.4	72.3
5250.0	121.0	121.2	4.4	233.3	68.9	5250.0	1.0	121.0	4.4	219.5	68.9
5460.0	111.0	110.9	4.6	231.9	65.9	5460.0	1.0	111.0	4.6	218.8	65.9
6090.0	75.8	75.8	5.1	217.7	53.5	6090.0	1.0	75.8	5.1	205.3	53.5
Determir	nación de la velocio	dad rotacional de opera	ación de la bo	omba		C	orrección po	r viscosidad	y velocidad rot	acional de operación de la bomba	
Determir Velocidad mínima	nación de la velocio Función	dad rotacional de opera Velocidad máxima	ación de la bo Función	omba Velocidad	Función	C Q@N2	orrección po	r viscosidad H@N2	y velocidad rot Q/N2@N2	acional de operación de la bomba P	η@N2
Determir Velocidad mínima 1000.0	nación de la velocio Función -75.5	dad rotacional de opera Velocidad máxima <u>3000.0</u>	ación de la bo Función 1288.2	omba Velocidad 1110.7	Función -32.2	C Q@N2 [gpm]	orrección po	r viscosidad H@N2 [ft]	y velocidad rot Q/N2@N2 [ft/rpm]	acional de operación de la bomba P [BHP]	η@N2 [%]
Determir Velocidad mínima 1000.0 1110.7	nación de la velocio Función -75.5 -32.2	dad rotacional de opera Velocidad máxima 3000.0 3000.0	ación de la bo Función 1288.2 1288.2	omba Velocidad 1110.7 1156.9	Función -32.2 -12.6	C Q@N2 [gpm] 0.0	orrección po	r viscosidad H@N2 [ft] 236.3	y velocidad rot Q/N2@N2 [ft/rpm] 0.0	acional de operación de la bomba P [BHP]	η@N2 [%] 0.0
Determir Velocidad mínima 1000.0 1110.7 1156.9	nación de la velocio Función -75.5 -32.2 -12.6	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7	Función -32.2 -12.6 -4.8	C Q@N2 [gpm] 0.0 1260.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1	acional de operación de la bomba P [BHP] 224.4	η@N2 [%] 0.0 30.2
Determir Velocidad mínima 1000.0 1110.7 1156.9 1174.7	nación de la velocio Función -75.5 -32.2 -12.6 -4.8	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5	Función -32.2 -12.6 -4.8 -1.8	C Q@N2 [gpm] 0.0 1260.0 1890.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6	acional de operación de la bomba P [BHP] 224.4 225.5	η@N2 [%] 0.0 30.2 43.9
Determir Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0	ción de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1	Función -32.2 -12.6 -4.8 -1.8 -0.7	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2	y velocidad rot: Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3	acional de operación de la bomba P [BHP] 224.4 225.5 240.9	η@N2 [%] 0.0 30.2 43.9 56.2
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ción de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0 3150.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 194.8	y velocidad rot: Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3	η@N2 [%] 0.0 30.2 43.9 56.2 65.7
Determin Velocidad mínima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.5	nación de la veloción Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	Example 1 Example 1 Examp	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 3780.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 178.7	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 5.2	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6	η@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 3990.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.4	acional de operación de la bomba p [BHP] 224.4 225.5 240.9 222.3 224.6 223.6	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8
Determin Velocidad minima 10000 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.5 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ción de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	Dmba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 (gpm) 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 3390.0 4410.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ción de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0 3350.0 3780.0 33990.0 4410.0 4830.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.4	η@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.7 -0.5 -0.5 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 [gpm] 0.0 1260.0 3150.0 3780.0 3990.0 4410.0 4830.0 5250.0 5250.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.6 223.4 219.5 205.5	1@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.5 1184.5 1184.5 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5	fad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1184.5 1184.1 1184.5 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.3	C Q@N2 [gpm] 0.0 1260.0 1890.0 3780.0 3780.0 3780.0 33990.0 4410.0 4830.0 5250.0 5460.0 5460.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0 111.0	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.4 219.5 218.8 275.5 218.8	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.6 1184.7	nación de la voloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.3	C Q@N2 [gpm] 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 3780.0 3990.0 4411.0 4830.0 5250.0 5466.0 6090.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0 111.0 75.8	y velocidad rot Q/N2@N2 [ft/rpm] 0.0 1.1 1.6 2.3 3.2 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.4 219.5 218.8 205.3	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ción de la bo Función 1288.2 1286.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -0.7 -0.5 -0.5 -0.5 -0.3	C Q@N2 (gpm) 0.0 1260.0 2730.0 3150.0 3780.0 3780.0 3990.0 4410.0 4830.0 5250.0 5460.0 6090.0	orrección po	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0 111.0 75.8	y velocidad rot Q/N2@N2 (ft/rpm] 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.4 219.5 218.8 205.3	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 68.9 65.9 53.5
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7 Velocidad rotaci	nación de la veloción - 75.5 - 32.2 - 12.6 - 4.8 - 1.8 - 0.7 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5 - 0.5	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 dot la bomba	ción de la bo Función 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1184.5 1184.6 1184.6 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 (gpm) 0.0 1260.0 2730.0 3780.0 3990.0 4410.0 4430.0 5250.0 5260.0 5460.0 6090.0	Speed	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0 111.0 75.8 Normal	y velocidad rot Q/N2@N2 [ft/rpm] U.O 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.4 219.5 218.8 205.3	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.5 53.5
Determin Velocidad minima 1000.0 1110.7 1156.9 1174.7 1181.5 1184.5 1184.5 1184.6 1184.7 Velocidad rotacic Velocidad rotacic	nación de la veloció Función - 75.5 - 32.2 - 12.6 - 4.8 - 1.8 - 0.7 - 0.5 - 0	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 de la bomba	ción de la bo Función 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2 1288.2	omba Velocidad 1110.7 1156.9 1174.7 1181.5 1184.5 1184.6 1184.6 1184.7 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.5 -0.5 -0.5 -0.3	C Q@N2 Igpm] 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 33990.0 4410.0 4430.0 5250.0 5466.0 6090.0	Speed	r viscosidad H@N2 [tt] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 154.0 3 121.0 111.0 75.8	y velocidad rot Q/N2@N2 [ft/rpm] 0. 1.1 1.6 2.3 2.7 3.2 3.2 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.4 219.5 218.8 205.3	1@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 65.9 53.5
Determin 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7	nación de la veloció Función -75.5 -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 de la bomba	etión de la be Función 1288.2 1288.	omba Velocidad 1110.7 1156.9 1174.7 1184.5 1184.5 1184.5 1184.5 1184.5 1184.5 1184.5 1184.5 1185.0 rpm rpm	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 (gpm) 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 33990.0 3990.0 4410.0 4830.0 6250.0 5460.0 6090.0 Alarms	Speed	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 194.8 778.7 171.3 156.6 140.3 121.0 111.0 75.8 Normal	y velocidad rot C/N2@N2 (ft/pm) 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.6 223.4 219.5 218.8 205.3	1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1000 1000 1000 1000 1000 1000 1000 1000 1000 1
Determin 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7	nación de la veloció Función - 75.5 - 32.2 - 12.6 - 4.8 - 1.8 - 0.7 - 0.5 - 0	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2 12888.2 12888.2 1288.2 1288.2 1288.2 1288.2 12882	2000 2010 2010 2010 2010 2010 2010 2010	Función -32.2 -12.6 -4.8 -1.8 -0.5 -0.5 -0.5 -0.5 -0.3	C Q@N2 Igpm] 0.0 1260.0 1890.0 2730.0 3780.0 3390.0 4410.0 4830.0 5250.0 5466.0 6090.0	Speed	r viscosidad H@N2 [tt] 236.3 225.8 219.8 208.2 194.8 178.7 171.3 156.6 140.3 121.0 111.0 75.8	y velocidad rot Q/N2@N2 [ft/pm] 0. 0. 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.4 219.5 218.8 205.3	1@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.3 68.9 65.9 53.5
Determin 1000.0 1110.7 1156.9 1174.7 1181.5 1184.1 1184.5 1184.6 1184.7	nación de la veloció Función - 75.5 - 32.2 - 12.6 - 4.8 - 1.8 - 0.7 - 0.5 - 0	dad rotacional de opera Velocidad máxima 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0 3000.0	ación de la bo Función 1288.2	Paint Velocidad 1110.7 1156.9 1174.7 1181.5 1184.1 1184.6 1184.5 1184.7 1185.0 1185.0	Función -32.2 -12.6 -4.8 -1.8 -0.7 -0.5 -0.5 -0.5 -0.5 -0.3	C Q @N2 (gpm] 0.0 1260.0 1890.0 2730.0 3150.0 3780.0 3390.0 4410.0 4830.0 5250.0 5460.0 6090.0 Alarms	Speed	r viscosidad H@N2 [ft] 236.3 225.8 219.8 208.2 178.7 171.3 156.6 140.3 156.6 140.3 121.0 111.0 75.8	y velocidad rot ON2@N2 (ft/pm) 0.0 0.0 1.1 1.6 2.3 2.7 3.2 3.4 3.7 4.1 4.4 4.6 5.1	acional de operación de la bomba P [BHP] 224.4 225.5 240.9 222.3 224.6 223.6 223.6 223.4 219.5 218.8 205.3	n@N2 [%] 0.0 30.2 43.9 56.2 65.7 71.6 72.8 73.5 72.3 68.9 53.5

Alcantarillados – CIACUA los sistemas de oleoductos por bombeo.

ICYA 3102 - 201310

Gráfica 5-5. Curvas de la bomba, de eficiencia y de potencia de la bomba booster de la estación de bombeo El Porvenir con crudo pesado Castilla (viscosidad cinemática reducida en un 99%, nuevas condiciones de bombeo).

Como se puede observar en la Tabla 5-14, la alarma de velocidad de la bomba booster de la estación de El Porvenir, cuando esta bombea crudo Castilla con su viscosidad cinemática reducida en un 99%, se puede controlar reduciendo el número de bombas en línea y aumentando el caudal a bombear, ya que se pasa de tener una velocidad rotacional de operación de la bomba de 1036 rpm a tener una de 1185 rpm. Al hacer una comparación con la Tabla 5-11, la eficiencia de la bomba se ve reducida solamente en 0,4% y la potencia absorbida por la bomba se incrementa en un 21,93%, ya que se están bombeando 177 Kbps más de crudo pesado con viscosidad cinemática reducida en un 99%. El incremento del caudal a bombear implica nuevamente una redefinición del punto de operación de la bomba ya que, para una altura piezométrica total por bomba fija, se está bombeando más caudal. Esto se evidencia claramente al comparar la Gráfica 5-3 con la Gráfica 5-4. En la primera de estas, el punto de operación de la bomba se encuentra en un caudal total por bomba de 4761,5 gpm para una altura piezométrica total por bomba de 78,4 ft. Por otro lado, en la segunda gráfica, el punto de operación de la bomba se encuentra en un caudal total por bomba de 6052,1 gpm para la misma altura piezométrica total por bomba, desplazando el punto de operación de la bomba en la gráfica nuevamente hacia la derecha. En la Gráfica 5-4 se puede ver que este punto de operación se encuentra nuevamente cerca del límite de operación de la bomba.

A partir de esto se concluye que la disminución de la viscosidad cinemática de un crudo, repercute directamente en la cantidad de caudal que debe ser bombeado para controlar las alarmas de velocidad. Entre menor sea la viscosidad, mayor es el caudal que debe ser bombeado para controlar la alarma, ya que el crudo se comporta como un crudo ligero. Adicionalmente, se concluye que, a pesar de que el control de alarmas es independiente de la alternativa de control que se elija entre variación del caudal a bombear o variación del número de bombas en línea, estas dos alternativas deben consideradas en última instancia, ya que hacen que la bomba opere cerca del límite de operación máxima de la bomba. La mejor y más sencilla alternativa de control corresponde entonces a la incorporación de variadores de velocidad y debe ser utilizada mientras sea posible (es decir, cuando se tengan bombas centrífugas de velocidad variable).

6 EFECTOS DE LA INYECCIÓN DE DRA EN DIFERENTES CONFIGURACIONES DE BATCHEO

El último efecto de la disminución de viscosidad que se evaluó en el software, fue el efecto de la inyección de diferentes concentraciones de agentes reductores de arrastre en el oleoducto cuando se tienen solamente dos batches: un batche de crudo Cusiana impulsando un batche de crudo Castilla.

En las simulaciones realizadas, se cambió la localización del segundo batche en 50 km, es decir, en una primera simulación se tendrán 50 km del oleoducto con crudo Cusiana y 780 km con crudo Castilla, una segunda simulación tendrá 100 km del oleoducto con crudo Cusiana y 730 km con crudo Castilla, y así sucesivamente hasta que el oleoducto transportara 800 km de crudo Cusiana y 30 km de crudo Castilla

La primera serie de simulaciones consistió en variar la concentración de DRA que debe ser inyectada en cada estación, con el fin de cumplir con las restricciones de la Slack Line y la MAOP, para cada una de las configuraciones de batcheo. Por otro lado, en la segunda serie de simulaciones se mantuvo la concentración de DRA inyectada en un valor constante (superior a las concentraciones de DRA que permitían cumplir con las restricciones de la Slack Line y la MAOP) en cada estación de bombeo, para cada una de las configuraciones de batcheo.

Para las dos series de simulaciones, se presentarán tablas y gráficas con los resultados de caudal, velocidad de las bombas, potencia hidráulica adicionada por las bombas y caudal almacenado en cada una de las estaciones de bombeo. Asimismo, se incluirán los perfiles de alturas piezométricas para cada configuración de batcheo. Adicionalmente, en la primera serie de simulaciones, se mostrarán también una tabla y una gráfica de variación de concentración de DRA inyectada en cada una de las estaciones de bombeo.

Como se mencionó anteriormente, para la primera serie de simulaciones el criterio para elegir la concentración de DRA a inyectar en cada una de las estaciones de bombeo, era elegir la concentración necesaria para cumplir con las restricciones de la Slack Line y la MAOP. De igual manera, en la serie de simulaciones se aseguró que en el oleoducto se generara la menor cantidad de alarmas de caudal, velocidad y potencia posibles, teniendo alarmas de overspeed en las bombas de la estación de bombeo Vasconia y alarmas de power limit en las bombas de la estación de bombeo de Caucasia. Los perfiles de alturas piezométricas obtenidos fueron los siguientes:

Gráfica 6-1. Perfil de alturas piezométricas primeros 50 km del oleoducto con crudo Cusiana.

Gráfica 6-2. Perfil de alturas piezométricas primeros 100 km del oleoducto con crudo Cusiana.

Gráfica 6-3. Perfil de alturas piezométricas primeros 150 km del oleoducto con crudo Cusiana.

Gráfica 6-4. Perfil de alturas piezométricas primeros 200 km del oleoducto con crudo Cusiana.

Gráfica 6-5. Perfil de alturas piezométricas primeros 250 km del oleoducto con crudo Cusiana.

Gráfica 6-6. Perfil de alturas piezométricas primeros 300 km del oleoducto con crudo Cusiana.

Gráfica 6-7. Perfil de alturas piezométricas primeros 350 km del oleoducto con crudo Cusiana.

Gráfica 6-8. Perfil de alturas piezométricas primeros 400 km del oleoducto con crudo Cusiana.

Gráfica 6-9. Perfil de alturas piezométricas primeros 450 km del oleoducto con crudo Cusiana.

Gráfica 6-10. Perfil de alturas piezométricas primeros 500 km del oleoducto con crudo Cusiana.

Gráfica 6-11. Perfil de alturas piezométricas primeros 550 km del oleoducto con crudo Cusiana.

Gráfica 6-12. Perfil de alturas piezométricas primeros 600 km del oleoducto con crudo Cusiana.

Gráfica 6-13. Perfil de alturas piezométricas primeros 650 km del oleoducto con crudo Cusiana.

Gráfica 6-14. Perfil de alturas piezométricas primeros 700 km del oleoducto con crudo Cusiana.

Gráfica 6-15. Perfil de alturas piezométricas primeros 750 km del oleoducto con crudo Cusiana.

Gráfica 6-16. Perfil de alturas piezométricas primeros 800 km del oleoducto con crudo Cusiana.

Los resultados de caudal, velocidad de las bombas, potencia hidráulica adicionada por las bombas y caudal almacenado en cada una de las estaciones de bombeo, fueron los siguientes:

Tabla 6-1. Caudal en cada una de las estaciones de bombeo para cada configuración de batcheo.

E et-	ación de homboo	Cupiagua	Cusi	ana		Fl Porvenir		Miraflores		Vasconia	Caucacia	Covoñac
L3u		Cupiagua	Cus		En orvenin		IVIII ariores	La Delleza	Vascollia	Caucasia	Covenas	
Abscisa de la	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Primeros 50km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	631.0	631.0	631.0	631.0	631.0	351.0	351.0	351.0
Primeros 100km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	634.0	634.0	634.0	634.0	634.0	351.0	351.0	351.0
Primeros 150km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	685.0	685.0	685.0	685.0	685.0	349.0	349.0	349.0
Primeros 200km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	677.0	677.0	677.0	677.0	677.0	350.0	350.0	350.0
Primeros 250km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	350.0	350.0	350.0
Primeros 300km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	346.0	346.0	346.0
Primeros 350km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	338.0	338.0	338.0
Primeros 400km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	343.0	343.0	343.0
Primeros 450km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	342.0	342.0	342.0
Primeros 500km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	340.0	340.0	340.0
Primeros 550km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	338.0	338.0	338.0
Primeros 600km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 650km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 700km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	376.0	376.0	376.0
Primeros 750km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	386.0	386.0	386.0
Primeros 800km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	393.0	393.0	393.0

Gráfica 6-17. Caudal en cada una de las estaciones de bombeo para cada configuración de batcheo.

Esta	ación de bombeo	Cupiagua	Cusi	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
1	Γipo de bomba	Main	Booster	Main	Booster	Rebooster	Main	Main		Main	Main	
Primeros 50km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3703.04	1001.28	3196.62	3389.14	3452.87	-	13933.63	3936.00	-
Primeros 100km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.50	1000.19	3414.60	3494.81	3569.12	-	13933.98	3940.60	-
Primeros 150km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.03	1046.15	3475.23	3352.10	3533.06	-	13931.57	3898.02	-
Primeros 200km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.75	1038.82	3463.74	3326.92	3360.75	-	13933.09	3924.49	-
Primeros 250km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.45	1048.91	3477.83	3362.12	3356.81	-	13933.33	3929.40	-
Primeros 300km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13927.57	3890.96	-
Primeros 350km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13910.62	3801.25	-
Primeros 400km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13915.58	3890.43	-
Primeros 450km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13912.40	3890.64	-
Primeros 500km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13906.39	3881.06	-
Primeros 550km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13901.79	3832.76	-
Primeros 600km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13895.14	3626.73	-
Primeros 650km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13895.14	3546.27	-
Primeros 700km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13955.72	4017.89	-
Primeros 750km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13963.88	4018.19	-
Primeros 800km Cusiana	Velocidad de la bomba (rpm)	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13968.69	4008.23	-

Tabla 6-2. Velocidad de las bombas en cada una de las estaciones de bombeo para cada configuració	n de batcheo
---	--------------

Gráfica 6-18. Velocidad de las bombas en cada una de las estaciones de bombeo para cada configuración de batcheo.

Esta	ación de bombeo	Cupiagua	Cusi	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
1	Γipo de bomba	Main	Booster	Main	Booster	Rebooster	Main	Main		Main	Main	
Primeros 50km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	7443.49	137.61	2643.37	3068.48	2799.22	-	7440.77	2656.92	-
Primeros 100km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5057.49	113.67	2625.89	2732.95	3049.39	-	8039.07	2669.05	-
Primeros 150km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5055.24	128.73	2857.84	2507.50	2535.35	-	8725.19	2582.71	-
Primeros 200km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5058.71	126.27	2816.81	2448.98	2225.44	-	8899.78	2639.87	-
Primeros 250km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5057.27	129.66	2869.83	2530.87	2236.97	-	9301.02	2653.15	-
Primeros 300km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	9467.11	2603.64	-
Primeros 350km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	5014.92	2461.48	-
Primeros 400km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	3179.56	2634.66	-
Primeros 450km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1677.77	2644.43	-
Primeros 500km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	610.94	2637.72	-
Primeros 550km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1087.70	2539.21	-
Primeros 600km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1122.34	2057.84	-
Primeros 650km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1126.84	1523.49	-
Primeros 700km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	535.16	1903.50	-
Primeros 750km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	352.83	1482.42	-
Primeros 800km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	207.76	1010.35	-

Tabla 6-3. Potencia hidráulica adicionada en cada una de las estaciones de bombec	para cada configuración de batcheo
---	------------------------------------

Gráfica 6-19. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para cada configuración de batcheo.

Tabla CA	Caudad	alles a s a a a d a	and and a	· · · · · · · · · · · · · · · · · · ·	1 ~~~~	a at a at a la a a	de le ere			a au al au	a a la fi a la		4 -	la auto da a a
10000 6-4	((1)(1(1))	aimacenaaa	en caaa	una ae	105	estaciones	ae non	nen	nara	((1))	contiali	racion	OP I	nateneo
1 4 5 1 4 5 1.	caaaa	annacchaao	ch caaa	and ac	100.0	cotacionico		1000	para	cuuu	conjiga	racion	ac,	ourcenco.

Esta	ación de bombeo	Cupiagua	Cusi	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Primeros 50km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	57.0	57.0	57.0	57.0	0.0	42.0	0.0	0.0
Primeros 100km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	54.0	54.0	54.0	54.0	0.0	42.0	0.0	0.0
Primeros 150km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	3.0	3.0	3.0	3.0	0.0	44.0	0.0	0.0
Primeros 200km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	11.0	11.0	11.0	11.0	0.0	43.0	0.0	0.0
Primeros 250km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	43.0	0.0	0.0
Primeros 300km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	47.0	0.0	0.0
Primeros 350km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.0	0.0	0.0
Primeros 400km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	0.0	0.0
Primeros 450km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	51.0	0.0	0.0
Primeros 500km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	53.0	0.0	0.0
Primeros 550km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	55.0	0.0	0.0
Primeros 600km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	58.0	0.0	0.0
Primeros 650km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	58.0	0.0	0.0
Primeros 700km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.0	0.0	0.0
Primeros 750km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0	0.0
Primeros 800km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Gráfica 6-20. Caudal almacenado en cada una de las estaciones de bombeo para cada configuración de batcheo.

Como se mencionó anteriormente, se presenta también una tabla y una gráfica de la concentración de DRA inyectada en cada una de las estaciones de bombeo:

Est	ación de bombeo	Cusiana	El Porvenir	Miraflores	La Belleza	Vasconia	Caucasia
Abscisa de la	a estación de bombeo [km]	0.000	33.024	85.96532	223.7116	319.6706	608.604
Primeros 50km Cusiana	Concentración de DRA inyectada [ppm]	0.00	22.51	5.41	3.78	0.43	0.00
Primeros 100km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	2.70	0.00	0.00	0.00
Primeros 150km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 200km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 250km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 300km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 350km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 400km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 450km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 500km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 550km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 600km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 650km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 700km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 750km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00
Primeros 800km Cusiana	Concentración de DRA inyectada [ppm]	0.00	0.00	0.00	0.00	0.00	0.00

Tabla 6-5.	Concentración	de DRA i	inyectada	en cad	a una i	de las	estacione	s de	bombeo	para	cada	config	uración	de
					batc	heo.								

Gráfica 6-21. Concentración de DRA inyectada en cada una de las estaciones de bombeo para cada configuración de batcheo.

Como se puede observar en la Tabla 6-1 y en Gráfica 6-17, los valores máximos de caudal que puede ser transportado se obtuvieron para la configuración de batcheo correspondiente a los primeros 800 km de Cusiana. Este resultado era el esperado, ya que para esta configuración, el oleoducto está prácticamente lleno de crudo ligero. Para las configuraciones de batcheo de 50 km a 650 km del oleoducto con crudo Cusiana, se transportará más o menos caudal de la estación Cusiana a la estación de El Porvenir, y de la estación Caucasia hasta el Terminal Marítimo de Coveñas dependiendo de la configuración de batcheo que se elija. Esto dependerá directamente del almacenamiento de caudal que se realice en la estaciones Miraflores y Vasconia (para el segundo caso), el cual se ilustra numérica y gráficamente en la Tabla 6-4 y la Gráfica 6-20, respectivamente. Las relaciones entre el caudal transportado y el caudal almacenado son sencillas. Si se almacena más caudal en El Porvenir, se transportará menos caudal de Cusiana a El Porvenir, y si se almacena más caudal en Miraflores y Vasconia, se transportará menos caudal de Caucasia a Coveñas.

Asimismo, se puede observar en la Tabla 6-2 y en la Gráfica 6-18 que las velocidades de las bombas de cada una de las estaciones de bombeo se mantienen prácticamente constantes, independiente de la configuración de batcheo que se tenga. Esto concuerda con una de las conclusiones que se encontraron anteriormente, donde se detallaba que la viscosidad cinemática del crudo no afectaba de manera sustancial la velocidad rotacional de operación de las bombas.

De igual manera, en la Tabla 6-3 y en la Gráfica 6-19, se puede observar que el mayor valor de potencia hidráulica adicionada es el de la estación de bombeo Vasconia para la configuración de batcheo correspondiente a los primeros 300 km del oleoducto con crudo Cusiana. Igualmente, al realizar una comparación entre la potencia hidráulica adicionada por la estación Vasconia y la potencia hidráulica adicionada por la estación Caucasia para cada configuración de batcheo, se puede detallar que cuando se tienen los primeros 50 a 400 km del oleoducto con crudo Cusiana, la estación Vasconia debe adicionar más potencia que la estación Caucasia, mientras que cuando se tienen los primeros 450 a 800 km del oleoducto con crudo Cusiana, es la estación Caucasia la que debe adicionar más potencia.

Por último, se puede observar en la Tabla 6-5 y en la Gráfica 6-21, la inyección de DRA para cumplir con las restricciones de la Slack Line y la MAOP fue necesaria solamente para dos configuraciones de batcheo: los primeros 50 km y los primeros 100 km del oleoducto con crudo Cusiana. Este resultado es completamente coherente, teniendo en cuenta que a medida que se tiene más crudo ligero y menos crudo pesado en el oleoducto, habrá menos pérdidas por fricción, por lo cual la inyección de DRA se vuelve innecesaria.

Para la segunda serie de simulaciones, las concentraciones de DRA inyectada en cada una de las estaciones de bombeo, fueron las siguientes:

		PPI	M DE DRA		
Cusiana	El Porvenir	Miraflores	La Belleza	Vasconia	Caucasia
250.00	117.28	250.00	250.00	117.28	0.00

Estas concentraciones están asociadas con los siguientes porcentajes de reducción de fricción:

% REDUCCIÓN DE FRICCIÓN CON DRACusianaEl PorvenirMirafloresLa BellezaVasconiaCaucasia54.054.054.054.00.0

El porcentaje de reducción de fricción con DRA fue escogido a partir del artículo *Drag Reduction* of *Crude Oil Flow in Pipelines Using Sodium Dodecyl Benzene Sulfonate Surfactant* (Rassoul & Hadi, 2007). Este artículo puntualiza que el máximo porcentaje de reducción de fricción logrado para un sistema cerrado de recirculación de un crudo ligero del sur de Iraq (32,7° API; G_s (60°F)=0,8644; v (50°C)=3.208 cSt) con un surfactante aniónico como agente reductor de arrastre, fue de 54% para una tubería de 2". De igual forma, el artículo detalla que este porcentaje de reducción aumenta conforme al diámetro de la tubería aumente. Teniendo en cuenta que los diámetros del oleoducto Cusiana – La Belleza – Vasconia – Coveñas varían entre 16" y 36", se escogió este porcentaje de reducción de fricción para establecer la concentración de DRA inyectada en cada una de las estaciones de bombeo.

Los perfiles de alturas piezométricas para cada una de las configuraciones de batcheo son los siguientes:

6000.

5000

métrica [psi]

Itura

1000.0

0.00 --39.06

160.94

260.94

60.94

Universidad de los Andes ICYA Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados – CIACUA Efectos hidráulicos de la disminución de viscosidad en los sistemas de oleoductos por bombeo.

460.94

560.94

660.94

760.94

Gráfica 6-22. Perfil de alturas piezométricas primeros 50 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

360.94 Abscisa [km]

Gráfica 6-23. Perfil de alturas piezométricas primeros 100 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

6000.

5000

[isd]

Gráfica 6-24. Perfil de alturas piezométricas primeros 150 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-25. Perfil de alturas piezométricas primeros 200 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-26. Perfil de alturas piezométricas primeros 250 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-27. Perfil de alturas piezométricas primeros 300 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-28. Perfil de alturas piezométricas primeros 350 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-29. Perfil de alturas piezométricas primeros 400 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-30. Perfil de alturas piezométricas primeros 450 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-31. Perfil de alturas piezométricas primeros 500 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-32. Perfil de alturas piezométricas primeros 550 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-33. Perfil de alturas piezométricas primeros 600 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-34. Perfil de alturas piezométricas primeros 650 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-35. Perfil de alturas piezométricas primeros 700 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-36. Perfil de alturas piezométricas primeros 750 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Gráfica 6-37. Perfil de alturas piezométricas primeros 800 km del oleoducto con crudo Cusiana (concentración de DRA inyectada constante).

Los resultados de caudal, velocidad de las bombas, potencia hidráulica adicionada por las bombas y caudal almacenado en cada una de las estaciones de bombeo, fueron los siguientes:

Tabla 6-6. Caudal en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Estad	Estación de bombeo		Cusi	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la e	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Primeros 50km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	699.0	699.0	699.0	699.0	699.0	335.0	335.0	335.0
Primeros 100km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	756.0	756.0	756.0	756.0	756.0	337.0	337.0	337.0
Primeros 150km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 200km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 250km Cusiana	Caudal [Kbpd]	192.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 300km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	334.0	334.0	334.0
Primeros 350km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	311.0	311.0	311.0
Primeros 400km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	324.0	324.0	324.0
Primeros 450km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	334.0	334.0	334.0
Primeros 500km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	333.0	333.0	333.0
Primeros 550km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	333.0	333.0	333.0
Primeros 600km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	332.0	332.0	332.0
Primeros 650km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	335.0	335.0	335.0
Primeros 700km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	376.0	376.0	376.0
Primeros 750km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	386.0	386.0	386.0
Primeros 800km Cusiana	Caudal [Kbpd]	193.0	719.0	719.0	688.0	688.0	688.0	688.0	688.0	393.0	393.0	393.0

Gráfica 6-38. Caudal en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Tabla 6-7. Velocidad de las bombas en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Estac	Estación de bombeo		Cus	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la e	stación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Tip	oo de bomba	Main	Booster	Main	Booster	Rebooster	Main	Main		Main	Main	
Primeros 50km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3433.21	1063.20	3282.02	3416.27	3387.00	-	13899.46	3463.11	-
Primeros 100km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.39	1113.06	3567.41	3740.62	3485.81	-	13904.46	3481.72	-
Primeros 150km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.45	1048.91	3477.83	3362.12	3374.97	-	13899.34	3466.20	-
Primeros 200km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.45	1048.91	3477.83	3362.12	3357.25	-	13899.36	3467.39	-
Primeros 250km Cusiana	Velocidad de la bomba [rpm]	3568.18	1185.00	3250.45	1048.91	3477.83	3362.12	3356.84	-	13899.40	3468.00	-
Primeros 300km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13898.15	3456.05	-
Primeros 350km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13829.07	3158.61	-
Primeros 400km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13867.81	3326.62	-
Primeros 450km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13893.99	3459.76	-
Primeros 500km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13890.55	3448.67	-
Primeros 550km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13890.43	3508.49	-
Primeros 600km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13887.98	3488.72	-
Primeros 650km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13895.14	3546.27	-
Primeros 700km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13955.72	4017.89	-
Primeros 750km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13963.88	4018.19	-
Primeros 800km Cusiana	Velocidad de la bomba [rpm]	3583.18	1185.00	3251.36	1048.91	3477.86	3362.11	3356.89	-	13968.69	4008.23	-

Gráfica 6-39. Velocidad de las bombas en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Tabla 6-8. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Esta	ción de bombeo	Cupiagua	Cus	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la e	estación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Ti	po de bomba	Main	Booster	Main	Booster	Rebooster	Main	Main		Main	Main	
Primeros 50km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5965.74	162.51	2978.09	3235.39	2813.57	-	1173.42	1555.52	-
Primeros 100km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5056.98	151.98	3210.11	3475.04	3141.89	-	279.16	1569.29	-
Primeros 150km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5057.27	129.66	2869.83	2530.87	2267.27	-	1319.99	1566.74	-
Primeros 200km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5057.27	129.66	2869.83	2530.87	2237.70	-	1292.78	1571.02	-
Primeros 250km Cusiana	Potencia hidráulica adicionada [hp]	1708.91	800.00	5057.27	129.66	2869.83	2530.87	2237.02	-	1241.31	1573.23	-
Primeros 300km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	104.94	1556.36	-
Primeros 350km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	14.02	1074.76	-
Primeros 400km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	3.75	1346.81	-
Primeros 450km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	58.10	1569.65	-
Primeros 500km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1039.01	1555.67	-
Primeros 550km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1146.66	1752.14	-
Primeros 600km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1160.87	1710.39	-
Primeros 650km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	1126.84	1523.49	-
Primeros 700km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	535.16	1903.50	-
Primeros 750km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	352.83	1482.42	-
Primeros 800km Cusiana	Potencia hidráulica adicionada [hp]	1731.15	800.00	5061.52	129.65	2869.83	2530.79	2237.07	-	207.76	1010.35	-

Gráfica 6-40. Potencia hidráulica adicionada en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Tabla 6-9. Caudal almacenado en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Estac	ión de bombeo	Cupiagua	Cus	iana		El Porvenir		Miraflores	La Belleza	Vasconia	Caucasia	Coveñas
Abscisa de la e	stación de bombeo [km]	-39.059	0.000	0.000	33.024	33.024	33.024	85.96532	223.71163	319.67062	608.60354	797.09436
Primeros 50km Cusiana	Caudal almacenado [Kbpd]	1.0	0.0	0.0	57.0	57.0	57.0	57.0	57.0	58.0	58.0	58.0
Primeros 100km Cusiana	Caudal almacenado [Kbpd]	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	56.0	56.0	56.0
Primeros 150km Cusiana	Caudal almacenado [Kbpd]	1.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	58.0	58.0	58.0
Primeros 200km Cusiana	Caudal almacenado [Kbpd]	1.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	58.0	58.0	58.0
Primeros 250km Cusiana	Caudal almacenado [Kbpd]	1.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	58.0	58.0	58.0
Primeros 300km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	59.0	59.0	59.0
Primeros 350km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	82.0	82.0	82.0
Primeros 400km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	69.0	69.0	69.0
Primeros 450km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	59.0	59.0	59.0
Primeros 500km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	60.0	60.0	60.0
Primeros 550km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	60.0	60.0	60.0
Primeros 600km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	61.0	61.0	61.0
Primeros 650km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	58.0	58.0	58.0
Primeros 700km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	17.0	17.0	17.0
Primeros 750km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	7.0	7.0	7.0
Primeros 800km Cusiana	Caudal almacenado [Kbpd]	0.0	0.0	0.0	68.0	68.0	68.0	68.0	68.0	0.0	0.0	0.0

Gráfica 6-41. Caudal almacenado en cada una de las estaciones de bombeo para cada configuración de batcheo (concentración de DRA inyectada constante).

Al realizar una comparación de los perfiles de alturas piezométricas, se puede observar que la línea de gradiente hidráulico es menos pendiente de una estación de bombeo a otra, debido a que el agente reductor de arrastre utilizado disminuye las pérdidas por fricción. Esta diferencia se resalta más en las configuraciones de batcheo de 50 km a 400 km del oleoducto con crudo Cusiana, es decir, cuando más de la mitad del oleoducto transporta crudo Castilla, donde la reducción de pérdidas por fricción en el transporte del crudo pesado gracias a la inyección del agente reductor de arrastre es evidente.

A diferencia de lo que se esperaba, la configuración de batcheo que más caudal transporta es la correspondiente a los primeros 100 km del oleoducto con crudo Cusiana, dejando de segunda

Universidad de los AndesICYA 3Departamento de Ingeniería Civil y AmbientalCentro de Investigaciones en Acueductos yAlcantarillados - CIACUAEfectos hidráulicos de la disminución de viscosidad en lossistemas de oleoductos por bombeo.Sistemas de la disminución de viscosidad en los

a la configuración de batcheo correspondiente a los primeros 800 km del oleoducto con crudo Cusiana. Esto sucedió gracias a que la concentración de DRA inyectada permite transportar más caudal bajo la primera configuración de batcheo, que bajo la segunda configuración. De igual forma, este resultado es consistente con la cantidad de caudal que es almacenado en la configuración de batcheo correspondiente a los primeros 100 km del oleoducto con crudo Cusiana (116 Kbpd), que es menor a la de la configuración de batcheo correspondiente a los primeros 800 km del oleoducto con crudo Cusiana (136 Kbpd). Esto último se puede evidenciar tanto numérica como gráficamente en la Tabla 6-9 y la Gráfica 6-41, respectivamente. Con esto, se concluye que la concentración de DRA que es inyectada en un sistema de oleoductos por bombeo determina cuál es la configuración de batcheo que puede transportar más caudal, llegando incluso a tener una configuración donde se logra transportar más crudo pesado que crudo ligero.

Al igual que en la simulación anterior, se puede observar en la Tabla 6-7 y la Gráfica 6-39 que las velocidades de las bombas de cada una de las estaciones de bombeo se mantienen prácticamente constantes, independiente de la configuración de batcheo que se tenga y la concentración de DRA inyectada. De nuevo, la viscosidad cinemática del crudo no afecta de manera sustancial la velocidad rotacional de operación de las bombas.

Al comparar la Gráfica 6-19 y la Gráfica 6-40, se puede observar el efecto más importante de los agentes reductores de arrastre. En la Gráfica 6-40, se puede ver claramente que la potencia hidráulica adicionada por las estaciones de bombeo es menor cuando se tiene una concentración de DRA inyectada mayor, independiente de la configuración de batcheo que se tenga. A pesar de que la diferencia que hay entre una simulación y otra en las cantidades de caudal que se transporta, el cambio más drástico de potencia se da en la estación de bombeo de Vasconia, ya que las bombas trabajan en promedio 5 veces más (deben adicionar 5 veces más potencia para transportar el caudal) cuando no se inyecta DRA.

7 CONCLUSIONES Y RECOMENDACIONES

7.1 Conclusiones

- El comportamiento de una bomba cuando esta bombea crudo ligero, no difiere de forma significativa a cuando esta bombea agua, en cuanto a eficiencia y velocidad rotacional de la bomba se refiere. Por esta razón, el transporte de crudo ligero de una estación de bombeo a otra llega a ser incluso más fácil que el transporte de agua en el punto de mayor eficiencia.
- El crudo ligero siempre va a tener ventaja sobre el crudo pesado en el transporte mediante los sistemas de oleoductos por bombeo, ya que requiere de menos potencia para ser bombeado.
- La potencia absorbida por las bombas de las estaciones de bombeo no depende de la viscosidad cinemática del crudo, sino del valor de la gravedad específica de este a 60°F (Gs (60°F)).
- Entre menor sea la viscosidad cinemática del crudo, mayor es la eficiencia con la que este puede ser bombeado.
- La viscosidad cinemática del crudo no afecta de manera sustancial la velocidad rotacional de operación de la bomba.
- El control de alarmas es independiente de la alternativa de control que se elija entre variación del caudal a bombear o variación del número de bombas en línea. Estas dos alternativas deben consideradas en última instancia, ya que hacen que la bomba opere cerca del límite de operación máxima de la bomba.
- La disminución de la viscosidad cinemática de un crudo, repercute directamente en la cantidad de caudal que debe ser bombeado para controlar las alarmas de velocidad. Entre menor sea la viscosidad, mayor es el caudal que debe ser bombeado para controlar la alarma, ya que el crudo se comporta como un crudo ligero.
- La mejor y más sencilla alternativa de control corresponde entonces a la incorporación de variadores de velocidad y debe ser utilizada mientras sea posible (es decir, cuando se tengan bombas centrífugas de velocidad variable).
- Los tanques de almacenamiento de las estaciones de bombeo desempeñan un papel supremamente importante, no sólo en el control de las alarmas de caudal, sino también en el control de las alarmas de velocidad.
- En los perfiles de alturas piezométricas, la inyección de DRA hace que la línea de gradiente hidráulico sea menos pendiente de una estación de bombeo a otra, debido a que se disminuyen las pérdidas por fricción. Para un tren de batcheo que consiste de dos batches (crudo Cusiana impulsando crudo Castilla), una disminución en las pérdidas por fricción no implica un aumento en el caudal que puede ser transportado por el oleoducto.
- La concentración de DRA que es inyectada en un sistema de oleoductos por bombeo determina cuál es la configuración de batcheo que puede transportar más caudal, llegando incluso a tener una configuración donde se logra transportar más crudo pesado que crudo ligero.

- La potencia hidráulica adicionada por las estaciones de bombeo es menor cuando se tiene una concentración de DRA inyectada mayor, independiente de la configuración de batcheo que se tenga.
- Para un tren de batcheo que consiste de dos batches (crudo Cusiana impulsando crudo Castilla), la localización del batche determina qué tanto caudal se puede transportar en el oleoducto y qué tanto caudal debe ser almacenado en las estaciones de bombeo que poseen tanques de almacenamiento.

7.2 Recomendaciones

- El método de la falsa posición, por ser un método numérico de cercamiento, debería restringir el valor de la velocidad de operación de la bomba entre los valores de velocidad rotacional mínima y la velocidad rotacional máxima. Sin embargo, en las simulaciones se obtuvieron valores para la velocidad rotacional de operación de la bomba por debajo de la velocidad rotacional mínima (alarma de velocidad underspeed) y por encima de la velocidad rotacional máxima (alarma de velocidad overspeed). Teniendo en cuenta que estas dos situaciones sí se pueden presentar, se concluye que el método de la falsa posición (y en sí, cualquier método numérico de cercamiento) no es el más adecuado para determinar la velocidad rotacional de operación de la bomba. Se recomienda entonces, utilizar un método numérico abierto, como el método de Newton Raphson o el método de la secante.
- Se debería incluir en el software, en la hoja electrónica BOMBAS, la altura neta de succión positiva NPSH3 de cada una de las bombas centrífugas del oleoducto, e implementar las correcciones que se le deben realizar a esta por la viscosidad cinemática del crudo, con el fin de tener otro parámetro hidráulico de evaluación en las bombas.

8 REFERENCIAS

- Al-Bemani, A., & Yaghi, B. M. (2002). Heavy Crude Oil Viscosity Reduction for Pipeline Transportation. *Energy Sources*, 93-102.
- Best Pumpworks. (2008). *INGERSOLL-RAND, Model #: DAH, 8x13, 6 Stage(s)*. Recuperado el 12 de Agosto de 2013, de Best Pumpworks: http://www.bestpumpworks.com/bestpw/rmfginv.nsf/0CEFA60B4BEE8310862570 6F004F84D0/\$File/8x13DA.pdf?OpenElement
- BP. (Junio de 2012). BP Statistical Review of World Energy June 2012. London, United Kingdom. Recuperado el 10 de Octubre de 2012, de BP: http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_a nd_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistica l_review_of_world_energy_full_report_2012.pdf
- Canadian Centre for Energy Information. (2002-2013). *How is crude oil used?* Recuperado el 11 de Enero de 2013, de Canadian Centre for Energy Information: http://www.centreforenergy.com/AboutEnergy/ONG/Oil/Overview.asp?page=2
- Centro de Investigaciones en Acueductos y Alcantarillados CIACUA. (2012). *ACTUALIZACIÓN MODELO HIDRÁULICO ESTADO ESTABLE OCENSA*. Bogotá D.C.: Universidad de los Andes.
- Colombia Energía. (23 de Enero de 2013). Crudos pesados, la gran apuesta del sector. *Colombia Energía*.
- Ecopetrol. (2012). *Coveñas*. Recuperado el 10 de Octubre de 2012, de Ecopetrol: http://www.ecopetrol.com.co/contenido.aspx?catID=83&conID=36476&pagID=1279 08
- Ecopetrol. (2012). *Redes de transporte*. Recuperado el 10 de Octubre de 2012, de Ecopetrol: http://www.ecopetrol.com.co/contenido.aspx?catID=127&conID=36123&pagID=127 171
- Ecopetrol. (2012). *Refinación*. Recuperado el 10 de Octubre de 2012, de Ecopetrol: http://www.ecopetrol.com.co/contenido.aspx?catID=46&conID=37668
- Galp Energia, SGPS, S.A. (2010). Origen y composición del petróleo. Recuperado el 11 de Enero de 2013, de Galp Energia, SGPS, S.A.: http://www.galpenergia.com/ES/agalpenergia/Os-nossos-negocios/Exploracao-Producao/fundamentos-engenharia-petroleo/Paginas/Origem-e-composicao-dopetroleo.aspx
- García, F. M. (Julio de 2002). La industria petrolera en Colombia. *Revista Credencial Historia*.

- Homayuni, F., Hamidi, A. A., & Vatani, A. (2012). An Experimental Investigation of Viscosity Reduction for Pipeline Transportation of Heavy and Extra-Heavy Crude Oils. *Petroleum Science and Technology*, 1946-1952.
- Hydraulic Institute. (2010). American National Standard (Guideline) for Effects of Liquid Viscosity on Rotodynamic (Centrifugal and Vertical) Pump Performance (ANSI/HI 9.6.7-2010). New Jersey: Hydraulic Institute.
- McNaughton, K. J. (1992). Bombas. Selección, uso y mantenimiento. México, D.F.: McGraw-Hill.
- OLEODUCTO CENTRAL S.A. OCENSA. (2013). *TRANSPORTANDO CRUDO*. Recuperado el 12 de Agosto de 2013, de OLEODUCTO CENTRAL S.A. – OCENSA: https://www.ocensa.com.co/Paginas/transportandoCrudo.aspx
- Rassoul, G., & Hadi, A. A. (2007). Drag Reduction of Crude Oil Flow in Pipelines Using Sodium Dodecyl Benzene Sulfonate Surfactant. *Iraqui Journal of Chemical and Petroleum Engineering*, 29-34.
- Redacción Llano 7 Días. (9 de Octubre de 2012). *Llano*. Recuperado el 10 de Octubre de 2012, de El Tiempo: http://www.eltiempo.com/colombia/llano/ARTICULO-WEB-NEW_NOTA_INTERIOR-12293783.html
- Saldarriaga, J. (2007). *Hidráulica de tuberías. Abastecimiento de agua, redes, riegos.* Bogotá D.C.: Alfaomega. ISBN 978-958-682-680-8.
- Trung, D. (1995). Modern SCADA Systems for Oil Pipelines. *Petroleum and Chemical Industry Conference, 1995. Record of Conference Papers., Industry Applications Society 42nd Annual,* 299-305.