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ABSTRACT 

This paper intends to bring forward a hydraulic based Water Distribution System (WDS) design 

methodology named Optimal Power Use Surface (OPUS). Its objective is to reach least-cost 

designs, executing a reduced number of iterations, and focusing on the setting-up of efficient ways 

in which energy is dissipated and flow is distributed. For its validation, the proposed algorithm was 

tested on three well known benchmark networks, frequently reported in the literature: Two-Loop, 

Hanoi and Balerma. When compared to results obtained through other methodologies, OPUS stands 

out for allowing designs with constructive costs very similar to those obtained in previous works 

but requiring a number of iterations several orders of magnitude bellow, especially for real-size 

networks. The methodology proved that following hydraulic principles is an excellent choice to 

design WDS and also provides an alternative path to the tiresome search process undertaken by 

metaheuristics.  

 

INTRODUCTION 

The optimized design of WDSs is a relevant problem at a global scale, this being due to the scarcity 

of resources and the importance of drinking water for human life. This issue aggravates in the 

context of developing countries, where millions of people still suffer the lack of an adequate 

service. In this context minimum-cost design methodologies are essential. 

 

Even though the design of WDSs is supposed to consider different criteria besides the construction 

costs (e.g. reliability, environmental impact and water quality), the minimum cost as the only 

objective is still used to validate and compare new design algorithms. This type of design consists 

in determining the diameter size of each pipe of the system in such a way that flow demands are 

satisfied with an adequate pressure and with a minimum capital cost. In spite of the fact that pipes 

are usually manufactured in discrete-sized diameters, the amount of possible pipe configurations is 

immense, which means that the problem is highly indeterminate. In fact, Yates et al. (1984) showed 

that it is a NP-HARD problem and thus only approximate methods could be successful in finding 

adequate solutions. 

 

Initial approximations involved traditional optimization techniques such as enumeration, linear and 

non-linear programming. But more recently these have been replaced by different metaheuristic 

algorithms due to their ease of implementation and other advantages like their broader search of the 

solution space, a relatively small reliance on the system’s initial configuration, and their capability 

of incorporating the discrete-sized diameters restriction. Successful attempts include Genetic 

Algorithms (Savic and Walters, 1997), Harmony Search (Geem, 2006), Scatter Search (Lin et al., 

2007), Cross Entropy (Perelman and Ostfeld, 2007), Simulated Annealing (Reca et al., 2007), and 

Particle Swarm (Geem, 2009) among others. 

 

These metaheuristics consist in bio-inspired algorithms that randomly generate a large number of 

possible solutions and test their fitness in terms of quality and capital costs. Generic learning 

functions are used to progressively improve the previous results. In the WDS design context, each 

solution corresponds to an alternative design, which means a different set of pipe diameter sizes. 



The evaluation of each of the alternative designs requires running static hydraulic simulations, thus 

a large number of iterations is needed before convergence is reached. This makes metaheuristics 

very demanding in terms of computational effort regardless their flexibility and their capability of 

accomplishing near-optimal results. For this reason, apart from the cost of the final solution, the 

number of hydraulic simulations (or iterations) is the main indicator used to measure and compare 

the efficiency of the different methodologies. Even though the learning functions used in 

metaheuristic algorithms involve testing the hydraulic performance of each of the candidate 

solutions, neither of them make use of additional hydraulic criteria. 

 

As a response to these tedious algorithms, some researchers have come through with new 

approaches that seek to develop a hydraulic treatment of the problem. While metaheuristics intend 

to optimize an objective function behaving towards the optimization variables simply as a series of 

numbers that must follow certain logic, without any understanding of the machinery behind that 

logic; these new approaches try to characterize the behaviour of the different hydraulic variables 

and understand the underlying dynamics.  

 

In 1975 I-Pai Wu carried out an analysis for the drip irrigation main line design problem, 

considering the hydraulic principles that it follows. After setting up a minimum pressure (    ) at 

the end of the line, still a big number of configurations could be constructed. Wu discovered that 

each of these configurations lead to a different way in which energy is spent. After analysing 

numerous alternatives he concluded that the least-cost alternative was that with a parabolic 

hydraulic gradient line (HGL) with a sag of 15% of the total head-loss ( ). Thus, optimal designs 
could be obtained by computing objective head-loss values for each pipe derived from the HGL 

fabricated using Wu´s criterion. 

 

Later in 1983, Professor Ronald Featherstone from Newcastle University in the United Kingdom 

first proposed to extend Wu´s criterion to the optimization of looped networks. This idea seemed 

like a sound possibility and was further developed by Saldarriaga (1998), who analysed hydraulic 

gradient surfaces on several WDS designs obtained using metaheuristic algorithms. Based on Wu’s 

criterion and Featherstone’s idea, the works of Villalba (2004) and Ochoa (2009) proved that 

hydraulic criteria could be used as the basis of WDS design in order to replace the iteration-

intensive stochastic approach required by metaheuristics; obtaining promising results, not only in 

performance, but also in the insight of the inner mechanics that govern WDS design. 

 

Based on the works made by Ochoa (2009) and Villalba (2004), a first design methodology was 

developed by the CIACUA (Water Distribution and Sewer Systems Research Centre), named 

SOGH. It was tested on three well known benchmark networks (Two-Loop, Hanoi and Balerma). 

This paper intends to bring forward an improvement to this WDS design methodology named 

Optimal Power Use Surfaces (OPUS), which proposes a net hydraulic approach following the ideas 

of the aforementioned authors (Takahashi et al., 2010). The objective of this methodology is to 

reach least-cost designs with a reduced number of iterations especially for real-size networks. This 

can be accomplished through the use of deterministic hydraulic principles drawn from the analysis 

of flow distribution and the way energy is used in the systems. These principles provide an 

alternative path to the tiresome search process undertaken by metaheuristics. Each of the steps that 

make up the OPUS algorithm are explained in the following section. Three different benchmark 

problems (Two-Loop, Hanoi and Balerma) are employed to test the methodology and the results are 

presented and discussed in this paper. Finally, conclusions are drawn from the outcome obtained 

and future work guidelines are stated.  

 

METHODOLOGY 

The developed OPUS design methodology consists in 6 basic sub-processes which are shown in 

Figure 1 and explained below in this section. 



 

Sump Search or Tree Structure. This step is based on two fundamental principles: The first one 

states that a WDS of minimum cost should convey the water to each of the demand nodes from the 

water sources, through a single route. This is drawn from the fact that redundancy is hydraulically 

inefficient, even though it favors reliability. Therefore, open WDSs could be a lot cheaper than 

looped networks, reason why this sub-process intends to decompose the looped system into an open 

tree-like structure (a spanning tree), in order to identify the nodes in the original model that 

correspond to the sumps of the open network (i.e., nodes with a lower head than that of all of its 

neighbors). 
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Figure 1: OPUS methodology BPMN diagram. 

 

The second principle follows from the flow expression derived from the Darcy-Weisbach and 

Colebrook-White equations. Leaving all the other parameters constant, the flow ( ) presents a 
relation approximately proportional with the diameter to a power of 2.6. Assuming a standard pipe 

cost equation and replacing the diameter according to this proportion, the cost per length of a pipe 

as a function of its design flow behaves as shown in Figure 2; which means that as the design flow 

for a pipe increases, the marginal cost decreases. 

 

 
Figure 2: Schematic relation between pipe cost and flow. 

 

From the abovementioned principles, an algorithm was designed in order to obtain the tree 

structure, aggregating flow values in the least number of main routes possible. The open network is 

set up starting from the water sources and then adding adjacent pipe-node pairs, one at a time. The 

group of available pairs in each iteration conform the ‘search front’ and each of these pairs are 

assigned a cost-benefit value (   ), making up a recursive process. 

  



 
Figure 3: Layout of the Hanoi WDS. The labels show pipe and nodal identification numbers. 

 

For example, take the Hanoi benchmark WDS shown in Figure 3: Starting from the source, the first 

pair to be added is the one consisting in pipe 1 and node 2 (<1, 2>). Then, the pair <2, 3> is added. 

At this point the pairs <3, 4>, <19, 19> and <20, 20> can be selected. These constitute the search 

front. Figure 3 shows the result for the entire execution of the sub-process, where the pipes 

highlighted (solid black) constitute the corresponding tree structure. 

 

The pair in the front with the higher cost-benefit value is selected to be part of the tree structure. 

The cost-benefit function of a pair is calculated by computing the quotient between the demand of 

the new node and the marginal cost of connecting it to the source: This entails the addition of the 

total cost of the pair’s pipe to the cost difference of transporting the additional flow through all of 

the upstream pipes. It is worth noting that these are not actual costs but proportional values drawn 

from the relation shown in Figure 2. The construction of the tree using this cost-benefit function has 

an O(NN
2
) time complexity, where NN is the number of nodes. 

 

The cost-benefit function is used because it favours the creation of few main routes that transport 

the largest portion of the total water volume. The process concludes when all of the system nodes 

have been added to the tree structure and at the end the leaf nodes in the tree structure are assigned 

the status of ‘sumps’.  

 

Optimal Power Use Surface. This sub-process gives the name to the entire methodology, being 

essential to it due to the close relation that it has with the work developed by I-Pai Wu. In this step a 

set of objective hydraulic heads (also understood as objective head losses) is established for each 

pipe within the system. By analysing the behaviour of optimal designs, Ochoa (2009) corroborated 

Wu’s suggestion, finding that the optimal hydraulic gradient line for pipe series was in effect a 

parabola. Besides, Ochoa discovered that the sag of this parabola depended on the demand 

distribution, the ratio between flow demands and pipe length, and the cost function; putting forward 

a methodology for its calculation. 

 



Contrarily to the approaches made by Villalba (2004) and Ochoa (2009), in the proposed 

methodology, the optimal power use surface is computed in the tree structure instead of using a 

graph algorithm on the original network. In this sense, Ochoa’s parabolic hydraulic gradient line is 

applied to each of the branches in the open network. First, the minimum allowable pressure is 

assigned to each of the sump nodes. Then, the topological distance for every node in the system to 

its source is calculated. Knowing the head in the reservoir, the heads of the intermediate nodes in 

each branch are calculated with a Parabolic Head Gradient Line (HGL) as a function of their 

distance to the source, as shown in Figure 4. 

 

 
Figure 4: I-Pai Wu's criterion for predefining the head on each node. 

 

As the branches converge while going over the tree upstream, it is necessary to recalculate the sag 

at each intersection by weighting the flow on each downstream route. It must be taken into account 

that the objective parabola has to be modified in the upstream direction, in case of encountering 

particularly elevated nodes, to make sure that the assigned head values meet the pressure 

requirements in every instance. Once this sub-process is concluded, all nodes must have an 

objective head value assigned, thus a flow is required in order to calculate the diameter of each pipe 

in the network. 

 

Figure 5 shows an example of the optimal power use surface for the Hanoi network. Note that for 

the water source the HGL corresponds to the total head available in the reservoir and for the sump 

nodes it was assigned the minimum pressure.  

 
Figure 5: Assigned surface for the Hanoi network. 
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Optimal Flow Distribution. This step assigns a design flow to every pipe in the system. 

Considering that in a looped network a specific hydraulic gradient surface could be obtained by an 

infinite number of continuous diameter configurations (Saldarriaga et al., 2011), it is necessary to 

predefine an objective flow for each pipe in order to obtain a configuration that minimizes costs. 

Therefore, this sub-process pretends to find a unique flow distribution scheme that respects mass 

conservation and conforms to the optimal power use surface previously obtained. In this case, the 

process is executed using the original graph instead of the spanning tree.  

 

Starting with the sumps, the flow demand is divided into the upstream pipes according to the 

following criterion: Only one pipe will be assigned the largest flow value, while the others will be 

assigned the flow that corresponds to the minimum diameter available (     . In order to determine 

the principal pipe (i.e. the pipe that will have the largest portion of the total flow demanded), several 

criterions can be used to evaluate their fitness. Same as in the tree structure step, the function      

is used, which means that the pipe with the biggest value of this function will be defined as the 

principal pipe. For non-sump nodes, the total demand is calculated adding its own flow demand and 

the flow demanded downstream. An iterative-recursive algorithm (IRA) can be used to perform all 

of the calculations with an O(NN) time complexity. At the end of the process, all of the pipes in the 

system must have been assigned an objective flow value. Note that this step has a higher impact in 

the case of looped systems.  

 

As an example, Figure 6 shows the optimal flow distribution that corresponds to the Hanoi network. 

 

 
Figure 6: Optimal flow distribution for the Hanoi network (Flow rates in m

3
/h). 

 

Diameter Calculation. This sub-process assigns continuous diameter sizes to all pipes. Having 

predefined the objective head losses and the design flow rate for each pipe in the system, the 

continuous diameter needed is given by a straightforward calculation. This calculation is explicit 

when the Hazen-Williams equation is used and iteratively for the Darcy-Weisbach and the 

Colebrook-White equations. The resulting continuous design is in theory a full-operational WDS, 

with a cost very close to the minimum. Due to the limited availability of diameter sizes, a next step 

is required to transform this “optimal” design to a feasible one. 

 



Diameter Round-Off. This step consists in approximating each continuous diameter to a discrete 

value from the list of commercially available diameter sizes, which is represented by the set 

  {        }. It was found that rounding to the nearest equivalent flow value offers the best 

results, even though it can be done following several criterions. This is done by elevating the 

diameter values to a power of 2.6, as explained in the Tree Structure step. Unfortunately, this step 

affects drastically the system’s hydraulic behaviour, especially if all the diameter sizes are rounded 

up or down.  

 

Optimization 

This final sub-process has two main goals: The first one is to ensure every node has a pressure 

higher than or equal to     ; secondly, it seeks for possible cost reductions. Several criteria could be 
used to establish the order in which pipes diameter values must be increased. It was found that the 

pipes with larger unit head-loss difference between real and objective values should be changed 

first. The process must continue until the whole system has acceptable pressures. The second part 

executes a two-way sweep starting from the reservoirs going towards the sumps in the direction of 

the flow, and then backwards: The reduction of each pipe’s diameter is considered twice. If any of 

these changes entails a pressure deficit it must be reversed immediately, otherwise it holds. To 

make sure minimum pressure is not being violated numerous hydraulic simulations are required.  

 

In first place, the diameter size of one pipe is increased iteratively while there are nodes with 

pressure deficit. Thus, this sub-process requires the most number of iteration of the whole 

methodology, being necessary to run a hydraulic simulation per pipe, for each single diameter 

modification. This sole heuristic can be used alone to obtain sound designs, in spite of this, it is 

strongly dependant on the initial pipe configuration. 

 

RESULTS 

The OPUS methodology was used on three benchmark systems: Two-Loop, Hanoi and Balerma. 

Different configurations of the parameters defined on each step of the methodology were tested, 

looking for optimal designs with discrete diameters (  {        } contains only diameter 

available at the local market) and, in some cases, continuous ones (    ) as potentially near 

optimal starting designs for the Round-off and Optimization sub-processes. 

 

Two-Loop 

Detailed information about this WDS can be found in Alperovits and Shamir (1977). The Hazen-

Williams head-loss equation was used with a roughness coefficient      , as specified in the 
mentioned publication, and also the unit prices table for each diameter size was adopted. With these 

values and with a minimum allowable pressure for every node of 30 m, the WDS was designed 

using the SOGH algorithm which is the OPUS predecessor methodology. 

 

The optimal discrete design was reached after 51 hydraulic simulations which leaded to a $419,000 

network. The number of hydraulic simulations reported by other authors who also reached this cost 

is shown in Table 1. 

 

Table 1: Reported number of iterations before reaching a cost of $419.000 for the Two-Loop WDS. 
 

Algorithm Number of iterations 

Genetic algorithms (Savic & Waters, 1997) 65,000 

Simulated annealing (Cunha & Sousa, 1999) 25,000 

Genetic algorithms (Wu & Simpson, 2001) 7,467 

Shuffled frog leaping (Eusuff & Lansey, 2003) 11,155 



Shuffled complex evolution (Liong & Atiquzzaman, 2004) 1,019 

Genetic algorithms (Reca & Martínez, 2006) 10,000 

Particle swarm optimization (Suribabu, 2006) 5,138 

Harmony search (Geem, 2006) 1,121 

Cross entropy (Perelman & Ostfeld, 2007) 35,000 

Scatter search (Lin et al., 2007) 3,215 

Particle swarm harmony search (Geem, 2009) 204 

Differential evolution (Suribabu C. , 2010) 4,750 

Honey-bee mating optimization (Mohan, 2010) 1,293 

SOGH (Ochoa, 2009) 51 

 

Hanoi 

The Hanoi network was first presented by Fujiwara and Khang (1990) and similarly to Two-Loop 

network, it has become a well-known benchmark WDS. The head-loss equation commonly used is 

Hazen-Williams with a      , the minimum pressure for the design scenario is 30 m and the 

pipes’ costs can be calculated using a potential function of the diameter with a unit coefficient of 

$1.1/m and an exponent of 1.5. 

 

The least cost continuous design reached for Hanoi presents a cost of $5,456,806, and is shown in 

Figure 7. It is worth noting that the continuous design involves diameter values higher than 40 

inches, which corresponds to the maximum allowable diameter according to Fujiwara and Khang 

(1990). Therefore, two different discrete designs were performed: The first one being based on the 

original diameter list, and the second one considering the availability of a 50 inches diameter. 

 

 
Figure 7: Hanoi network least cost continuous design (diameters in inches). 

 

The OPUS methodology for the first case reached a cost of $6’147,882.45 after 83 iterations. 

Although this is not the least cost reported, the number of hydraulic simulations needed to reach this 

result is three orders of magnitude smaller than that of other approaches, as can be seen in Table 2. 

The pipe diameter sizes in inches for this configuration are: 40, 40, 40, 40, 40, 40, 40, 40, 40, 30, 

24, 24, 16, 16, 12, 12, 20, 20, 24, 40, 20, 12, 40, 30, 30, 20, 16, 12, 16, 12, 12, 12, 16 and 30 (these 

diameters are shown in order of pipe identification number). 



 

Table 2: Reported costs and number of iterations for the Hanoi WDS. 
 

Algorithm Cost (millions) Number of iterations 

Genetic Algorithm (Savic and Walters, 1997) $6.073 1,000,000 

Simulated annealing (Cunha and Sousa, 1999) $6.056 53,000 

Harmony search (Geem, 2002) $6.056 200,000 

Shuffled frog leaping (Eusuff and Lansey, 2003) $6.073 26,987 

Shuffled complex evolution (Liong & Atiquzzaman, 2004) $6.220 25,402 

Genetic Algorithm (Vairavamoorthy, 2005) $6.056 18,300 

Ant colony optimization (Zecchin et al., 2006) $6.134 35,433 

Genetic Algorithms (Reca & Martínez, 2006) $6.081 50,000 

Genetic Algorithms (Reca et al., 2007) $6.173 26,457 

Simulated annealing (Reca et al., 2007) $6.333 26,457 

Simulated annealing with tabu search (Reca et al., 2007) $6.353 26,457 

Local search with simulated annealing (Reca et al., 2007) $6.308 26,457 

Harmony search (Geem, 2006) $6.081 27,721 

Cross entropy (Perelman & Ostfeld, 2007) $6.081 97,000 

Scatter search (Lin et al., 2007) $6.081 43,149 

Modified GA 1 (Kadu, 2008) $6.056 18,000 

Modified GA 2 (Kadu, 2008) $6.190 18,000 

Particle swarm harmony search (Geem, 2009) $6.081 17,980 

Heuristic based approach (Mohan S. a., 2009) $6.701 70 

Differential evolution (Suribabu C. , 2010) $6.081 48,724 

Honey-bee mating optimization (Mohan, 2010) $6.117 15,955 

Heuristic based approach (Suribabu C. , 2012)  $6.232 259 

SOGH (Ochoa, 2009) $6.337 94 

Optimal power use surface (this study) $6.173 83 

 

Extrapolating the cost function for a 50” diameter it would have a unit cost of $388.91/m. Taking 

this into account, the total cost of the design obtained following the OPUS algorithm was of only 

$5’342,840.13, as the real hydraulic gradient surface resembled the optimal in a higher degree. The 

diameter sizes in inches are: 50, 50, 40, 40, 40, 40, 40, 24, 24, 40, 20, 20, 12, 12, 12, 16, 20, 20, 20, 

40, 16, 12, 40, 30, 24, 20, 12, 12, 12, 12, 12, 12, 12 and 20. 
 

Balerma 

Balerma corresponds to a WDS of an irrigation district in Almería, Spain. The pipe diameter sizes 

commercially available for its design are manufactured exclusively in PVC, with an absolute 

roughness coefficient of 0.0025 mm. The minimum pressure allowable is of 20 m and the pipes’ 

costs are calculated using a potential function, with a power of 2.06. Its topology is presented in 

Figure 8. 



 

 
Figure 8: Topology of the Balerma network. 

 

As a result of implementing the OPUS methodology on this network, a €1.755 millions continuous 

design was founded. Also, after executing the round-off and optimization processes, the optimal 

discrete design was reached requiring 957 hydraulic simulations which leaded to a €2.106 millions 

network. Table 3 presents other reported costs and their respective number of iterations. 

 

 

Table 3: Reported costs and number of iterations for the Balerma WDS. 

Algorithm Cost (€ millions) Number of iterations 

Genetic algorithm (Reca & Martínez, 2006) 2.302 10.000.000 

Harmony search (Geem, 2006) 2.601 45.400 

Harmony search (Geem, 2006) 2.018 10.000.000 

Genetic algorithm (Reca et al., 2007) 3.738 45.400 

Simulated annealing (Reca et al., 2007) 3.476 45.400 

Simulated annealing with taboo search (Reca et al., 2007) 3.298 45.400 

Local search with simulated annealing (Reca et al., 2007) 4.310 45.400 

Hybrid discrete dynamically dimensioned search     

(Tolson, 2009) 
1,940 30,000,000 

Harmony search with particle swarm (Geem, 2009) 2.633 45.400 



SOGH (Ochoa, 2009) 2.100 1.779 

Memetic algorithm (Baños, 2010) 3,120 45,400 

Genetic heritage evolution by stochastic transmission 

(Bolognesi, 2010) 
2,002 250,000 

Differential evolution (Zheng, 2012) 1,998 2,400,000 

Self-adaptive differential evolution (Zheng, 2012) 1,983 1,300,000 

Optimal power use surface (this study) 2.106 957 

 

CONCLUSIONS 

The WDS least-cost design methodology known as Optimal Power Use Surface (OPUS) herein 

introduced, considers optimal distribution pattern of flow in the network as a way of spending 

energy properly. This approach differentiates it from metaheuristic algorithms that explore the 

solution space without considering hydraulic principles. 

 

The methodology significantly reduces the number of iterations and keeps the constructive costs of 

the network significantly close to the minimum. In the case of Hanoi the difference results only of 

1.9% with respect to the lowest cost reported in the literature and with a number of iterations three 

orders of magnitude below.  

 

OPUS is a methodology that worked well on large networks, making it possible to minimize 

constructive costs in a very reduced number of iterations. On the other hand, when applied to small 

WDSs, the hydraulics result very affected due to the relative difference between the tree structure 

and the real looped network. Taking into account that the design is executed based on the open 

network (spanning tree), the final result ends up being governed by the optimization process and not 

by the steps based on hydraulic principles. 

 

This methodology clearly proves that considering hydraulic bases allows the optimization of WDS 

design to reduce significantly the number of iterations required. Theoretical networks with some 

restrictions that limit the design possibilities were tested in this paper. For this reason, it is 

recommended to test this methodology on real networks and including different additional 

objectives such as maximizing reliability and minimizing leakage. Finally energy approaches can 

also be applied to calibrate models and design system operation. 
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